import json import shutil import gc import gradio as gr import torch import safetensors # hack to load safetensors.torch from safetensors.torch import save_file from huggingface_hub import hf_hub_download def check_simple_file(st_weights_path, torch_weights_path): st_weights = safetensors.torch.load_file(st_weights_path) torch_weights = torch.load(torch_weights_path, map_location=torch.device('cpu')) # check if keys are the same if st_weights.keys() != torch_weights.keys(): # retrieve different keys unexpected_keys = st_weights.keys() - torch_weights.keys() return f"keys are not the same ! Conversion failed - unexpected keys are: {unexpected_keys} for the file {st_weights_path}" total_errors = [] # check all weights are same for key, value in st_weights.items(): # this automatically asserts that the weights are same and raises error if not try: torch.testing.assert_close(torch_weights[key], value, rtol=1e-5, atol=1e-5) except Exception as e: total_errors.append(e) del st_weights del torch_weights gc.collect() return total_errors def run(pr_number, model_id): is_sharded = False try: st_sharded_index_file = hf_hub_download(repo_id=model_id, filename="model.safetensors.index.json", revision=f"refs/pr/{pr_number}") torch_sharded_index_file = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json") is_sharded = True except: pass if not is_sharded: try: st_weights_path = hf_hub_download(repo_id=model_id, filename="model.safetensors", revision=f"refs/pr/{pr_number}") torch_weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") except Exception as e: return f"Error: {e} | \n Maybe you specified model ids or PRs that does not exist or does not contain any `model.safetensors` or `pytorch_model.bin` files" total_errors = check_simple_file(st_weights_path, torch_weights_path) else: total_errors = [] total_st_files = set(json.load(open(st_sharded_index_file, "r"))["weight_map"].values()) total_pt_files = set(json.load(open(torch_sharded_index_file, "r"))["weight_map"].values()) if len(total_st_files) != len(total_pt_files): return f"weights are not the same there are {len(total_st_files)} files in safetensors and {len(total_pt_files)} files in torch ! Conversion failed - {len(total_errors)} errors : {total_errors}" # check if the mapping are correct if not all([pt_file.replace("pytorch_model", "model").replace(".bin", ".safetensors") in total_st_files for pt_file in total_pt_files]): return f"Conversion failed! Safetensors files are not the same as torch files - make sure you have the correct files in the PR" for pt_file in total_pt_files: st_file = pt_file.replace("pytorch_model", "model").replace(".bin", ".safetensors") st_weights_path = hf_hub_download(repo_id=model_id, filename=st_file, revision=f"refs/pr/{pr_number}") torch_weights_path = hf_hub_download(repo_id=model_id, filename=pt_file) total_errors += check_simple_file(st_weights_path, torch_weights_path) # remove files for memory optimization shutil.rmtree(st_weights_path) shutil.rmtree(torch_weights_path) if len(total_errors) > 0: return f"weights are not the same ! Conversion failed - {len(total_errors)} errors : {total_errors}" return "Safetensors and torch weights are the same! Conversion sucessfull - you can safely merge the PR" DESCRIPTION = """ The steps are the following: - You got tagged in a Safetensors PR? Check if it works! - Identify the PR number that you want to check. - Paste the model id and the PR number below - Click "Submit" - That's it! You'll get feedback if the user successfully converted a model in `safetensors` format or not! This checker also support sharded weights. """ demo = gr.Interface( title="SafeTensors Checker", description=DESCRIPTION, allow_flagging="never", article="Check out the [Safetensors repo on GitHub](https://github.com/huggingface/safetensors)", inputs=[ gr.Text(max_lines=1, label="PR number"), gr.Text(max_lines=1, label="model_id"), ], outputs=[gr.Markdown(label="output")], fn=run, ).queue() demo.launch()