Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import mimetypes | |
import numpy as np | |
import os | |
import shutil | |
import subprocess | |
import torch | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.download_util import load_file_from_url | |
from os import path as osp | |
from tqdm import tqdm | |
from realesrgan import RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
try: | |
import ffmpeg | |
except ImportError: | |
import pip | |
pip.main(['install', '--user', 'ffmpeg-python']) | |
import ffmpeg | |
def get_video_meta_info(video_path): | |
ret = {} | |
probe = ffmpeg.probe(video_path) | |
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video'] | |
has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams']) | |
ret['width'] = video_streams[0]['width'] | |
ret['height'] = video_streams[0]['height'] | |
ret['fps'] = eval(video_streams[0]['avg_frame_rate']) | |
ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None | |
ret['nb_frames'] = int(video_streams[0]['nb_frames']) | |
return ret | |
def get_sub_video(args, num_process, process_idx): | |
if num_process == 1: | |
return args.input | |
meta = get_video_meta_info(args.input) | |
duration = int(meta['nb_frames'] / meta['fps']) | |
part_time = duration // num_process | |
print(f'duration: {duration}, part_time: {part_time}') | |
os.makedirs(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'), exist_ok=True) | |
out_path = osp.join(args.output, f'{args.video_name}_inp_tmp_videos', f'{process_idx:03d}.mp4') | |
cmd = [ | |
args.ffmpeg_bin, f'-i {args.input}', '-ss', f'{part_time * process_idx}', | |
f'-to {part_time * (process_idx + 1)}' if process_idx != num_process - 1 else '', '-async 1', out_path, '-y' | |
] | |
print(' '.join(cmd)) | |
subprocess.call(' '.join(cmd), shell=True) | |
return out_path | |
class Reader: | |
def __init__(self, args, total_workers=1, worker_idx=0): | |
self.args = args | |
input_type = mimetypes.guess_type(args.input)[0] | |
self.input_type = 'folder' if input_type is None else input_type | |
self.paths = [] # for image&folder type | |
self.audio = None | |
self.input_fps = None | |
if self.input_type.startswith('video'): | |
video_path = get_sub_video(args, total_workers, worker_idx) | |
self.stream_reader = ( | |
ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24', | |
loglevel='error').run_async( | |
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) | |
meta = get_video_meta_info(video_path) | |
self.width = meta['width'] | |
self.height = meta['height'] | |
self.input_fps = meta['fps'] | |
self.audio = meta['audio'] | |
self.nb_frames = meta['nb_frames'] | |
else: | |
if self.input_type.startswith('image'): | |
self.paths = [args.input] | |
else: | |
paths = sorted(glob.glob(os.path.join(args.input, '*'))) | |
tot_frames = len(paths) | |
num_frame_per_worker = tot_frames // total_workers + (1 if tot_frames % total_workers else 0) | |
self.paths = paths[num_frame_per_worker * worker_idx:num_frame_per_worker * (worker_idx + 1)] | |
self.nb_frames = len(self.paths) | |
assert self.nb_frames > 0, 'empty folder' | |
from PIL import Image | |
tmp_img = Image.open(self.paths[0]) | |
self.width, self.height = tmp_img.size | |
self.idx = 0 | |
def get_resolution(self): | |
return self.height, self.width | |
def get_fps(self): | |
if self.args.fps is not None: | |
return self.args.fps | |
elif self.input_fps is not None: | |
return self.input_fps | |
return 24 | |
def get_audio(self): | |
return self.audio | |
def __len__(self): | |
return self.nb_frames | |
def get_frame_from_stream(self): | |
img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel | |
if not img_bytes: | |
return None | |
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3]) | |
return img | |
def get_frame_from_list(self): | |
if self.idx >= self.nb_frames: | |
return None | |
img = cv2.imread(self.paths[self.idx]) | |
self.idx += 1 | |
return img | |
def get_frame(self): | |
if self.input_type.startswith('video'): | |
return self.get_frame_from_stream() | |
else: | |
return self.get_frame_from_list() | |
def close(self): | |
if self.input_type.startswith('video'): | |
self.stream_reader.stdin.close() | |
self.stream_reader.wait() | |
class Writer: | |
def __init__(self, args, audio, height, width, video_save_path, fps): | |
out_width, out_height = int(width * args.outscale), int(height * args.outscale) | |
if out_height > 2160: | |
print('You are generating video that is larger than 4K, which will be very slow due to IO speed.', | |
'We highly recommend to decrease the outscale(aka, -s).') | |
if audio is not None: | |
self.stream_writer = ( | |
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}', | |
framerate=fps).output( | |
audio, | |
video_save_path, | |
pix_fmt='yuv420p', | |
vcodec='libx264', | |
loglevel='error', | |
acodec='copy').overwrite_output().run_async( | |
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) | |
else: | |
self.stream_writer = ( | |
ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}', | |
framerate=fps).output( | |
video_save_path, pix_fmt='yuv420p', vcodec='libx264', | |
loglevel='error').overwrite_output().run_async( | |
pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) | |
def write_frame(self, frame): | |
frame = frame.astype(np.uint8).tobytes() | |
self.stream_writer.stdin.write(frame) | |
def close(self): | |
self.stream_writer.stdin.close() | |
self.stream_writer.wait() | |
def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0): | |
# ---------------------- determine models according to model names ---------------------- # | |
args.model_name = args.model_name.split('.pth')[0] | |
if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] | |
elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] | |
elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] | |
elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
netscale = 2 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] | |
elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size) | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') | |
netscale = 4 | |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth'] | |
elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size) | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
netscale = 4 | |
file_url = [ | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', | |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' | |
] | |
# ---------------------- determine model paths ---------------------- # | |
model_path = os.path.join('weights', args.model_name + '.pth') | |
if not os.path.isfile(model_path): | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
for url in file_url: | |
# model_path will be updated | |
model_path = load_file_from_url( | |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) | |
# use dni to control the denoise strength | |
dni_weight = None | |
if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1: | |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') | |
model_path = [model_path, wdn_model_path] | |
dni_weight = [args.denoise_strength, 1 - args.denoise_strength] | |
# restorer | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
dni_weight=dni_weight, | |
model=model, | |
tile=args.tile, | |
tile_pad=args.tile_pad, | |
pre_pad=args.pre_pad, | |
half=not args.fp32, | |
device=device, | |
) | |
if 'anime' in args.model_name and args.face_enhance: | |
print('face_enhance is not supported in anime models, we turned this option off for you. ' | |
'if you insist on turning it on, please manually comment the relevant lines of code.') | |
args.face_enhance = False | |
if args.face_enhance: # Use GFPGAN for face enhancement | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', | |
upscale=args.outscale, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=upsampler) # TODO support custom device | |
else: | |
face_enhancer = None | |
reader = Reader(args, total_workers, worker_idx) | |
audio = reader.get_audio() | |
height, width = reader.get_resolution() | |
fps = reader.get_fps() | |
writer = Writer(args, audio, height, width, video_save_path, fps) | |
pbar = tqdm(total=len(reader), unit='frame', desc='inference') | |
while True: | |
img = reader.get_frame() | |
if img is None: | |
break | |
try: | |
if args.face_enhance: | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
else: | |
output, _ = upsampler.enhance(img, outscale=args.outscale) | |
except RuntimeError as error: | |
print('Error', error) | |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') | |
else: | |
writer.write_frame(output) | |
torch.cuda.synchronize(device) | |
pbar.update(1) | |
reader.close() | |
writer.close() | |
def run(args): | |
args.video_name = osp.splitext(os.path.basename(args.input))[0] | |
video_save_path = osp.join(args.output, f'{args.video_name}_{args.suffix}.mp4') | |
if args.extract_frame_first: | |
tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames') | |
os.makedirs(tmp_frames_folder, exist_ok=True) | |
os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png') | |
args.input = tmp_frames_folder | |
num_gpus = torch.cuda.device_count() | |
num_process = num_gpus * args.num_process_per_gpu | |
if num_process == 1: | |
inference_video(args, video_save_path) | |
return | |
ctx = torch.multiprocessing.get_context('spawn') | |
pool = ctx.Pool(num_process) | |
os.makedirs(osp.join(args.output, f'{args.video_name}_out_tmp_videos'), exist_ok=True) | |
pbar = tqdm(total=num_process, unit='sub_video', desc='inference') | |
for i in range(num_process): | |
sub_video_save_path = osp.join(args.output, f'{args.video_name}_out_tmp_videos', f'{i:03d}.mp4') | |
pool.apply_async( | |
inference_video, | |
args=(args, sub_video_save_path, torch.device(i % num_gpus), num_process, i), | |
callback=lambda arg: pbar.update(1)) | |
pool.close() | |
pool.join() | |
# combine sub videos | |
# prepare vidlist.txt | |
with open(f'{args.output}/{args.video_name}_vidlist.txt', 'w') as f: | |
for i in range(num_process): | |
f.write(f'file \'{args.video_name}_out_tmp_videos/{i:03d}.mp4\'\n') | |
cmd = [ | |
args.ffmpeg_bin, '-f', 'concat', '-safe', '0', '-i', f'{args.output}/{args.video_name}_vidlist.txt', '-c', | |
'copy', f'{video_save_path}' | |
] | |
print(' '.join(cmd)) | |
subprocess.call(cmd) | |
shutil.rmtree(osp.join(args.output, f'{args.video_name}_out_tmp_videos')) | |
if osp.exists(osp.join(args.output, f'{args.video_name}_inp_tmp_videos')): | |
shutil.rmtree(osp.join(args.output, f'{args.video_name}_inp_tmp_videos')) | |
os.remove(f'{args.output}/{args.video_name}_vidlist.txt') | |
def main(): | |
"""Inference demo for Real-ESRGAN. | |
It mainly for restoring anime videos. | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input video, image or folder') | |
parser.add_argument( | |
'-n', | |
'--model_name', | |
type=str, | |
default='realesr-animevideov3', | |
help=('Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |' | |
' RealESRGAN_x2plus | realesr-general-x4v3' | |
'Default:realesr-animevideov3')) | |
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder') | |
parser.add_argument( | |
'-dn', | |
'--denoise_strength', | |
type=float, | |
default=0.5, | |
help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. ' | |
'Only used for the realesr-general-x4v3 model')) | |
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image') | |
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video') | |
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing') | |
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding') | |
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border') | |
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face') | |
parser.add_argument( | |
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).') | |
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video') | |
parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg') | |
parser.add_argument('--extract_frame_first', action='store_true') | |
parser.add_argument('--num_process_per_gpu', type=int, default=1) | |
parser.add_argument( | |
'--alpha_upsampler', | |
type=str, | |
default='realesrgan', | |
help='The upsampler for the alpha channels. Options: realesrgan | bicubic') | |
parser.add_argument( | |
'--ext', | |
type=str, | |
default='auto', | |
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') | |
args = parser.parse_args() | |
args.input = args.input.rstrip('/').rstrip('\\') | |
os.makedirs(args.output, exist_ok=True) | |
if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(args.input)[0].startswith('video'): | |
is_video = True | |
else: | |
is_video = False | |
if is_video and args.input.endswith('.flv'): | |
mp4_path = args.input.replace('.flv', '.mp4') | |
os.system(f'ffmpeg -i {args.input} -codec copy {mp4_path}') | |
args.input = mp4_path | |
if args.extract_frame_first and not is_video: | |
args.extract_frame_first = False | |
run(args) | |
if args.extract_frame_first: | |
tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames') | |
shutil.rmtree(tmp_frames_folder) | |
if __name__ == '__main__': | |
main() | |