Saba-chat-test / app.py
Sakalti's picture
Update app.py
caf779a verified
import gradio as gr
from huggingface_hub import InferenceClient
# 使用可能なモデルのリスト
models = ["Sakalti/Saba1.5-Pro", "Sakalti/Saba2-Preview", "Sakalti/Saba2.1-Preview"]
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
selected_model
):
# デバッグ用: 各入力値の型を出力
print(f"Message: {message} (Type: {type(message)})")
print(f"History: {history} (Type: {type(history)})")
print(f"System Message: {system_message} (Type: {type(system_message)})")
print(f"Max Tokens: {max_tokens} (Type: {type(max_tokens)})")
print(f"Temperature: {temperature} (Type: {type(temperature)})")
print(f"Top-p: {top_p} (Type: {type(top_p)})")
print(f"Selected Model: {selected_model} (Type: {type(selected_model)})")
# 型変換: selected_modelを文字列に変換
selected_model = str(selected_model)
# 選択したモデルに基づいてInferenceClientを初期化
client = InferenceClient(selected_model)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# インターフェース
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=models, value=models[0], label="モデル"),
gr.Textbox(value="ユーザーの応答と依頼に答えてください。ポジティブに", label="システムメッセージ"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (核 sampling)",
),
],
concurrency_limit=30 # 例: 同時に4つのリクエストを処理
)
if __name__ == "__main__":
demo.launch(share=True)