Spaces:
Running
Running
File size: 2,438 Bytes
9d208b7 4ac2dfd 9d208b7 4ac2dfd 9d208b7 5ff012b 9d208b7 4ac2dfd 9d208b7 4ac2dfd 9d208b7 d594974 9d208b7 4ac2dfd 9d208b7 4ac2dfd 9d208b7 9b33246 9d208b7 4ac2dfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
from huggingface_hub import InferenceClient
import base64
from io import BytesIO
from PIL import Image
"""
Hugging Face Hubの推論APIについての詳細は、以下のドキュメントを参照してください: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Sakalti/SabaVL1-2B") # モデル名をQwen2-VL-2B-Instructに更新
def encode_image(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/jpeg;base64,{img_str}"
def respond(
message,
image,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
if history is None:
history = []
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
if image is not None:
image_url = encode_image(image)
messages.append({"role": "user", "content": [{"type": "image_url", "image_url": {"url": image_url}}]})
messages.append({"role": "user", "content": [{"type": "text", "text": message}]})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
gradioのChatInterfaceのカスタマイズについては、以下のドキュメントを参照してください: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Image(type="pil", label="画像をアップロード"),
gr.Textbox(value="あなたは親切なチャットボットです。", label="システムメッセージ"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |