import gradio as gr from huggingface_hub import InferenceClient import base64 from io import BytesIO from PIL import Image """ Hugging Face Hubの推論APIについての詳細は、以下のドキュメントを参照してください: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("Sakalti/SabaVL1-2B") # モデル名を更新 def encode_image(image): buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return f"data:image/jpeg;base64,{img_str}" def respond( message, image, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) if image is not None: image_url = encode_image(image) messages.append({"role": "user", "content": [{"type": "image_url", "image_url": {"url": image_url}}]}) messages.append({"role": "user", "content": [{"type": "text", "text": message}]}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ gradioのChatInterfaceのカスタマイズについては、以下のドキュメントを参照してください: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Image(type="pil", label="画像をアップロード"), gr.Textbox(value="あなたは親切なチャットボットです。", label="システムメッセージ"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()