Spaces:
Running
Running
File size: 4,164 Bytes
ef187eb 927c70f 0cffd40 ef187eb 11fa80e 63b6eaf 2b0f02c 11fa80e 0cffd40 8b1e96d 3c4c016 35aa514 8b1e96d ec35e66 4efab5c ec35e66 4efab5c ce19625 35aa514 ce19625 4efab5c 8b1e96d 35aa514 ce19625 927c70f 8b1e96d f286ae5 ce19625 f4107e3 ce19625 927c70f 9b38787 3a2b9b2 8b1e96d ce19625 11fa80e ce19625 927c70f ce19625 0cffd40 8b3ca8d 0cffd40 8b1e96d 0cffd40 4efab5c 3c4c016 8b1e96d 0cffd40 927c70f 8b1e96d 3c4c016 ce19625 927c70f ce19625 927c70f ce19625 927c70f 8b3ca8d f4107e3 8b3ca8d fe16630 8b3ca8d 8b1e96d 927c70f 8b1e96d 927c70f 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, KDPM2AncestralDiscreteScheduler
from huggingface_hub import hf_hub_download
import spaces
from PIL import Image
import requests
from translatepy import Translator
translator = Translator()
# Constants
model = "Corcelio/mobius"
vae_model = "madebyollin/sdxl-vae-fp16-fix"
CSS = """
.gradio-container {
max-width: 690px !important;
}
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Load VAE component
vae = AutoencoderKL.from_pretrained(
vae_model,
torch_dtype=torch.float16
)
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Function
@spaces.GPU()
def generate_image(
prompt,
negative="low quality",
width=1024,
height=1024,
scale=1.5,
steps=30,
clip=3):
prompt = str(translator.translate(prompt, 'English'))
print(f'prompt:{prompt}')
image = pipe(
prompt,
negative_prompt=negative,
width=width,
height=height,
guidance_scale=scale,
num_inference_steps=steps,
clip_skip=clip,
)
return image.images[0]
examples = [
"a cat eating a piece of cheese",
"a ROBOT riding a BLUE horse on Mars, photorealistic",
"Ironman VS Hulk, ultrarealistic",
"a CUTE robot artist painting on an easel",
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
"An alien holding sign board contain word 'Flash', futuristic, neonpunk",
"Kids going to school, Anime style"
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>Mobius</center></h1>")
gr.HTML("<p><center><a href='https://huggingface.co/Corcelio/mobius'>mobius</a> text-to-image generation</center><br><center>Multi-Languages. Midjourney Aesthetic for All Your Images</center></p>")
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label='Enter Your Prompt', value="best quality, HD, aesthetic", scale=6)
submit = gr.Button(scale=1, variant='primary')
img = gr.Image(label='Mobius Generated Image')
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
negative = gr.Textbox(label="Negative prompt", value="low quality")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
with gr.Row():
scale = gr.Slider(
label="Guidance",
minimum=3.5,
maximum=7,
step=0.1,
value=7,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
clip = gr.Slider(
label="Clip Skip",
minimum=1,
maximum=10,
step=1,
value=3,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=img,
fn=generate_image,
cache_examples="lazy",
)
prompt.submit(fn=generate_image,
inputs=[prompt, negative, width, height, scale, steps, clip],
outputs=img,
)
submit.click(fn=generate_image,
inputs=[prompt, negative, width, height, scale, steps, clip],
outputs=img,
)
demo.queue().launch() |