Spaces:
Running
Running
File size: 9,977 Bytes
27e4a6a d4fba6d 4816388 9e8f5e5 4816388 9e8f5e5 bc1f498 9e8f5e5 d95dbe9 32fdddd 9e8f5e5 8b0fc18 9e8f5e5 980ffaa 481dde5 9e8f5e5 6b3d1c3 fc85da7 8b0fc18 9e8f5e5 7bf5a19 fc85da7 6b3d1c3 9e8f5e5 6b3d1c3 9e8f5e5 6b3d1c3 9e8f5e5 8fe1e3d 9e8f5e5 7c78be7 9e8f5e5 7c78be7 9e8f5e5 7c78be7 6b3d1c3 9e8f5e5 8c1a558 9e8f5e5 53635c2 9e8f5e5 8b0fc18 174c9a8 9e8f5e5 53635c2 6b3d1c3 9e8f5e5 99a5876 9e8f5e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from pathlib import Path
from PIL import Image
import streamlit as st
import insightface
from insightface.app import FaceAnalysis
from huggingface_hub import InferenceClient, AsyncInferenceClient
import asyncio
import os
import random
import numpy as np
import yaml
try:
with open("config.yaml", "r") as file:
credentials = yaml.safe_load(file)
except Exception as e:
st.error(f"Error al cargar el archivo de configuraci贸n: {e}")
credentials = {"username": "", "password": ""}
MAX_SEED = np.iinfo(np.int32).max
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
PREDEFINED_SEED = random.randint(0, MAX_SEED)
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
upscale_client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = upscale_client.predict(input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception:
return None
def authenticate_user(username, password):
return username == credentials["username"] and password == credentials["password"]
def prepare_face_app():
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('onix.onnx')
return app, swapper
app, swapper = prepare_face_app()
def sort_faces(faces):
return sorted(faces, key=lambda x: x.bbox[0])
def get_face(faces, face_id):
if not faces or len(faces) < face_id:
raise ValueError("Rostro no disponible.")
return faces[face_id - 1]
def swap_faces(source_image, source_face_index, destination_image, destination_face_index):
faces = sort_faces(app.get(source_image))
source_face = get_face(faces, source_face_index)
res_faces = sort_faces(app.get(destination_image))
if destination_face_index > len(res_faces) or destination_face_index < 1:
raise ValueError("脥ndice de rostro de destino no v谩lido.")
res_face = get_face(res_faces, destination_face_index)
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
return result
async def generate_image(prompt, width, height, seed, model_name):
if seed == -1:
seed = random.randint(0, MAX_SEED)
image = await client.text_to_image(prompt=prompt, height=height, width=width, model=model_name)
return image, seed
async def gen(prompt, width, height, model_name):
seed = PREDEFINED_SEED
image, seed = await generate_image(prompt, width, height, seed, model_name)
image_path = save_image(image, f"generated_image_{seed}.jpg", prompt)
return str(image_path)
def list_saved_images():
return list(DATA_PATH.glob("*.jpg"))
def display_gallery():
st.header("Galer铆a de Im谩genes Guardadas")
images = list_saved_images()
if images:
cols = st.columns(8)
for i, image_file in enumerate(images):
with cols[i % 8]:
st.image(str(image_file), caption=image_file.name, use_column_width=True)
prompt = get_prompt_for_image(image_file.name)
st.write(prompt[:300])
if st.button(f"Usar", key=f"select_{i}_{image_file.name}"):
st.session_state['generated_image_path'] = str(image_file)
st.success("Imagen seleccionada")
if st.button(f"Borrar", key=f"delete_{i}_{image_file.name}"):
os.remove(image_file)
st.success("Imagen borrada")
display_gallery()
else:
st.info("No hay im谩genes guardadas.")
def save_prompt(prompt):
with open(DATA_PATH / "prompts.txt", "a") as f:
f.write(prompt + "\n")
st.success("Prompt guardado.")
def run_async(func, *args):
return asyncio.run(func(*args))
async def improve_prompt(prompt):
try:
instruction = ("With this idea, describe in English a detailed txt2img prompt in 500 characters at most, add illumination, atmosphere, cinematic elements, and characters if needed...")
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=500)
return response['generated_text'][:500] if 'generated_text' in response else response.strip()
except Exception as e:
return f"Error mejorando el prompt: {e}"
def save_image(image, file_name, prompt=None):
image_path = DATA_PATH / file_name
if image_path.exists():
st.warning(f"La imagen '{file_name}' ya existe en la galer铆a. No se guard贸.")
return None
else:
image.save(image_path, format="JPEG")
if prompt:
save_prompt(f"{file_name}: {prompt}")
return image_path
def get_prompt_for_image(image_name):
prompts = {}
try:
with open(DATA_PATH / "prompts.txt", "r") as f:
for line in f:
if line.startswith(image_name):
prompts[image_name] = line.split(": ", 1)[1].strip()
except FileNotFoundError:
return "No hay prompt asociado."
return prompts.get(image_name, "No hay prompt asociado.")
def login_form():
st.title("Iniciar Sesi贸n")
username = st.text_input("Usuario", value="admin")
password = st.text_input("Contrase帽a", value="flux3x", type="password")
if st.button("Iniciar Sesi贸n"):
if authenticate_user(username, password):
st.success("Autenticaci贸n exitosa.")
st.session_state['authenticated'] = True
else:
st.error("Credenciales incorrectas. Intenta de nuevo.")
def upload_image_to_gallery():
uploaded_image = st.file_uploader("Sube una imagen a la galer铆a", type=["jpg", "jpeg", "png"])
if uploaded_image:
image = Image.open(uploaded_image)
image_path = save_image(image, f"{uploaded_image.name}")
if image_path:
save_prompt("uploaded by user")
st.success(f"Imagen subida: {image_path}")
def main():
st.set_page_config(layout="wide")
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
login_form()
return
st.title("Flux +Upscale +Prompt Enhancer +FaceSwap")
generated_image_path = st.session_state.get('generated_image_path')
st.header("Generador de Im谩genes")
prompt = st.sidebar.text_area("Descripci贸n de la imagen", height=150, max_chars=500)
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
model_option = st.sidebar.selectbox("Modelo", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"])
prompt_checkbox = st.sidebar.checkbox("Prompt Enhancer")
upscale_checkbox = st.sidebar.checkbox("Escalar imagen")
width, height = (720, 1280) if format_option == "9:16" else (1280, 720)
upload_image_to_gallery()
if prompt_checkbox:
with st.spinner("Mejorando el prompt..."):
try:
improved_prompt = run_async(improve_prompt, prompt)
except Exception as e:
st.error(f"Error al mejorar el prompt: {str(e)}")
improved_prompt = prompt
else:
improved_prompt = prompt
if st.sidebar.button("Generar Imagen"):
with st.spinner("Generando imagen..."):
try:
result = run_async(gen, improved_prompt, width, height, model_option) # Usar el improved_prompt
st.session_state['generated_image_path'] = result
st.image(result, caption="Imagen Generada")
except Exception as e:
st.error(f"Error al generar la imagen: {str(e)}")
if generated_image_path:
if upscale_checkbox:
with st.spinner("Escalando imagen..."):
try:
upscale_image_path = get_upscale_finegrain("Upscale", generated_image_path, 2)
if upscale_image_path:
st.image(upscale_image_path, caption="Imagen Escalada")
except Exception as e:
st.error(f"Error al escalar la imagen: {str(e)}")
st.header("Intercambio de Rostros")
source_image_file = st.file_uploader("Imagen de Origen", type=["jpg", "jpeg", "png"])
if source_image_file is not None:
try:
source_image = Image.open(source_image_file)
except Exception as e:
st.error(f"Error al cargar la imagen de origen: {str(e)}")
source_image = None
else:
source_image = Image.open("face.jpg")
source_face_index = st.number_input('Posici贸n del Rostro', min_value=1, value=1, key="source_face_index")
destination_face_index = st.number_input('Posici贸n del Rostro de Destino', min_value=1, value=1, key="destination_face_index")
if st.button("Intercambiar Rostros"):
try:
destination_image = Image.open(generated_image_path)
result_image = swap_faces(np.array(source_image), source_face_index, np.array(destination_image), destination_face_index)
swapped_image = Image.fromarray(result_image)
swapped_image_path = save_image(swapped_image, f"swapped_image_{PREDEFINED_SEED}.jpg")
if swapped_image_path:
st.image(swapped_image, caption="Intercambio de Rostro")
os.remove(generated_image_path)
else:
st.warning("La imagen intercambiada ya existe en la galer铆a.")
except Exception as e:
st.error(f"Ocurri贸 un error al intercambiar rostros: {str(e)}")
display_gallery()
if __name__ == "__main__":
main() |