Spaces:
Running
Running
File size: 10,012 Bytes
27e4a6a d4fba6d 4816388 9e8f5e5 4816388 9e8f5e5 bc1f498 9e8f5e5 d95dbe9 32fdddd 9e8f5e5 8b0fc18 9e8f5e5 980ffaa 481dde5 b99630c b6a9749 9e8f5e5 0d349dc 9e8f5e5 b99630c 9e8f5e5 6b3d1c3 fc85da7 8b0fc18 9e8f5e5 7bf5a19 fc85da7 6b3d1c3 9e8f5e5 6b3d1c3 9e8f5e5 6b3d1c3 9e8f5e5 1903294 8fe1e3d 1903294 8fe1e3d 1903294 b99630c 1903294 b99630c 9e8f5e5 1903294 7c78be7 b99630c 1903294 b99630c 7c78be7 b99630c 7c78be7 6b3d1c3 1903294 b99630c 1903294 b99630c 9e8f5e5 1903294 8c1a558 1903294 b99630c 1903294 9e8f5e5 1903294 53635c2 9e8f5e5 8b0fc18 174c9a8 1903294 9e8f5e5 acffa8b 9e8f5e5 b99630c 1903294 b99630c c62ce13 9e8f5e5 b99630c 1903294 9e8f5e5 b99630c 1903294 53635c2 b99630c 9e8f5e5 1903294 b99630c 9e8f5e5 b99630c 9e8f5e5 99a5876 1903294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from pathlib import Path
from PIL import Image
import streamlit as st
import insightface
from insightface.app import FaceAnalysis
from huggingface_hub import InferenceClient, AsyncInferenceClient
import asyncio
import os
import random
import numpy as np
import yaml
try:
with open("config.yaml", "r") as file:
credentials = yaml.safe_load(file)
except Exception as e:
st.error(f"Error al cargar el archivo de configuración: {e}")
credentials = {"username": "", "password": ""}
MAX_SEED = np.iinfo(np.int32).max
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
PREDEFINED_SEED = random.randint(0, MAX_SEED)
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
if not HF_TOKEN_UPSCALER:
st.warning("HF_TOKEN_UPSCALER no está configurado. Algunas funcionalidades pueden no funcionar.")
def login_form():
st.title("Iniciar Sesión")
username = st.text_input("Usuario", value="admin")
password = st.text_input("Contraseña", value="flux3x", type="password")
if st.button("Iniciar Sesión"):
if authenticate_user(username, password):
st.success("Autenticación exitosa.")
st.session_state['authenticated'] = True
else:
st.error("Credenciales incorrectas. Intenta de nuevo.")
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
upscale_client = InferenceClient("fal/AuraSR-v2", hf_token=HF_TOKEN_UPSCALER)
result = upscale_client.predict(input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception as e:
st.error(f"Error al mejorar la imagen: {e}")
return None
def authenticate_user(username, password):
return username == credentials["username"] and password == credentials["password"]
def prepare_face_app():
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('onix.onnx')
return app, swapper
app, swapper = prepare_face_app()
def sort_faces(faces):
return sorted(faces, key=lambda x: x.bbox[0])
def get_face(faces, face_id):
if not faces or len(faces) < face_id:
raise ValueError("Rostro no disponible.")
return faces[face_id - 1]
def swap_faces(source_image, source_face_index, destination_image, destination_face_index):
faces = sort_faces(app.get(source_image))
source_face = get_face(faces, source_face_index)
res_faces = sort_faces(app.get(destination_image))
if destination_face_index > len(res_faces) or destination_face_index < 1:
raise ValueError("Índice de rostro de destino no válido.")
res_face = get_face(res_faces, destination_face_index)
result = swapper.get(destination_image, res_face, source_face, paste_back=True)
return result
def generate_image(prompt, width, height, seed, model_name):
if seed == -1:
seed = random.randint(0, MAX_SEED)
image = client.text_to_image(prompt=prompt, height=height, width=width, model=model_name)
return image, seed
def gen(prompts, width, height, model_name, num_variants=1, use_enhanced=True):
images = []
try:
for idx, prompt in enumerate(prompts):
seed = random.randint(0, MAX_SEED)
image, seed = generate_image(prompt, width, height, seed, model_name)
image_path = save_image(image, f"generated_image_{seed}.jpg")
if image_path:
st.success(f"Imagen {idx + 1} generada")
images.append(str(image_path))
except Exception as e:
st.error(f"Error al generar imágenes: {e}")
return images
def improve_prompt(prompt):
try:
instructions = [
"With my idea create a vibrant description for a detailed txt2img prompt, 300 characters max.",
"With my idea write a creative and detailed text-to-image prompt in English, 300 characters max.",
"With my idea generate a descriptive and visual txt2img prompt in English, 300 characters max.",
"With my idea describe a photorealistic with illumination txt2img prompt in English, 300 characters max.",
"With my idea give a realistic and elegant txt2img prompt in English, 300 characters max.",
"With my idea conform a visually dynamic and surreal txt2img prompt in English, 300 characters max.",
"With my idea realize an artistic and cinematic txt2img prompt in English, 300 characters max."
]
instruction = random.choice(instructions)
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=100)
return response['generated_text'][:100] if 'generated_text' in response else response.strip()
except Exception as e:
return f"Error mejorando el prompt: {e}"
def generate_variations(prompt, num_variants, use_enhanced):
prompts = set()
while len(prompts) < num_variants:
if use_enhanced:
enhanced_prompt = improve_prompt(prompt)
prompts.add(enhanced_prompt)
else:
prompts.add(prompt)
return list(prompts)
def delete_all_images():
try:
for image_file in list_saved_images():
os.remove(image_file)
st.success("Todas las imágenes han sido eliminadas.")
except Exception as e:
st.error(f"Error al eliminar las imágenes: {e}")
def upload_images_to_gallery():
uploaded_images = st.sidebar.file_uploader("Sube imágenes a la galería", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded_images:
for uploaded_image in uploaded_images:
image = Image.open(uploaded_image)
image_path = save_image(image, f"{uploaded_image.name}")
if image_path:
save_prompt("uploaded by user")
st.sidebar.success(f"Imagen subida: {image_path}")
def main():
st.set_page_config(layout="wide")
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
login_form()
return
st.title("Flux +Upscale +Prompt Enhancer +FaceSwap")
if st.sidebar.button("Borrar todas las imágenes"):
delete_all_images()
generated_image_path = st.session_state.get('generated_image_path')
prompt = st.sidebar.text_area("Descripción de la imagen", height=150, max_chars=500)
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
model_option = st.sidebar.selectbox("Modelo", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev", "enhanceaiteam/Flux-Uncensored-V2", "enhanceaiteam/Flux-Uncensored"])
prompt_checkbox = st.sidebar.checkbox("Prompt Enhancer")
upscale_checkbox = st.sidebar.checkbox("Escalar imagen")
width, height = (360, 640) if format_option == "9:16" else (640, 360) if format_option == "16:9" else (640, 640)
num_variants = st.sidebar.slider("Número de imágenes a generar", 1, 8, 1) if prompt_checkbox else 1
if prompt_checkbox:
with st.spinner("Generando prompts mejorados..."):
prompts = generate_variations(prompt, num_variants, True)
else:
prompts = [prompt]
upload_images_to_gallery()
if st.sidebar.button("Generar Imágenes"):
with st.spinner("Generando imágenes..."):
try:
results = gen(prompts, width, height, model_option, num_variants, prompt_checkbox)
st.session_state['generated_image_paths'] = results
for result in results:
st.image(result, caption="Imagen Generada")
except Exception as e:
st.error(f"Error al generar las imágenes: {str(e)}")
if generated_image_path:
if upscale_checkbox:
with st.spinner("Escalando imagen..."):
try:
upscale_image_path = get_upscale_finegrain("Upscale", generated_image_path, 2)
if upscale_image_path:
st.image(upscale_image_path, caption="Imagen Escalada")
except Exception as e:
st.error(f"Error al escalar la imagen: {str(e)}")
st.header("Intercambio de Rostros")
source_image_file = st.file_uploader("Imagen de Origen", type=["jpg", "jpeg", "png"])
if source_image_file is not None:
try:
source_image = Image.open(source_image_file)
except Exception as e:
st.error(f"Error al cargar la imagen de origen: {str(e)}")
source_image = None
else:
source_image = Image.open("face.jpg")
source_face_index = st.number_input('Posición del Rostro', min_value=1, value=1, key="source_face_index")
destination_face_index = st.number_input('Posición del Rostro de Destino', min_value=1, value=1, key="destination_face_index")
if st.button("Intercambiar Rostros"):
try:
destination_image = Image.open(generated_image_path)
result_image = swap_faces(np.array(source_image), source_face_index, np.array(destination_image), destination_face_index)
swapped_image = Image.fromarray(result_image)
swapped_image_path = save_image(swapped_image, f"swapped_image_{PREDEFINED_SEED}.jpg")
if swapped_image_path:
st.image(swapped_image, caption="Intercambio de Rostro")
os.remove(generated_image_path)
else:
st.warning("La imagen intercambiada ya existe en la galería.")
except Exception as e:
st.error(f"Ocurrió un error al intercambiar rostros: {str(e)}")
display_gallery()
if __name__ == "__main__":
main() |