Spaces:
Running
Running
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from pathlib import Path | |
from PIL import Image | |
from huggingface_hub import AsyncInferenceClient, InferenceClient | |
from gradio_client import Client, handle_file | |
from gradio_imageslider import ImageSlider | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER") | |
client = AsyncInferenceClient() | |
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Directorio de almacenamiento de imágenes | |
DATA_PATH = Path("./data") | |
DATA_PATH.mkdir(exist_ok=True) # Asegura que el directorio exista | |
def enable_lora(lora_add, basemodel): | |
return basemodel if not lora_add else lora_add | |
async def generate_image(combined_prompt, model, width, height, scales, steps, seed): | |
try: | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
image = await client.text_to_image( | |
prompt=combined_prompt, height=height, width=width, guidance_scale=scales, | |
num_inference_steps=steps, model=model | |
) | |
return image, seed | |
except Exception as e: | |
return f"Error al generar imagen: {e}", None | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
try: | |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
result = client.predict( | |
input_image=handle_file(img_path), prompt=prompt, negative_prompt="", | |
seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, | |
controlnet_decay=1, condition_scale=6, tile_width=112, | |
tile_height=144, denoise_strength=0.35, num_inference_steps=18, | |
solver="DDIM", api_name="/process" | |
) | |
return result[1] if isinstance(result, list) and len(result) > 1 else None | |
except Exception as e: | |
return None | |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
improved_prompt = await improve_prompt(prompt) | |
combined_prompt = f"{prompt} {improved_prompt}" | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed) | |
if isinstance(image, str) and image.startswith("Error"): | |
return [image, None] | |
image_path = DATA_PATH / f"image_{seed}.jpg" | |
image.save(image_path, format="JPEG") | |
if process_upscale: | |
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor) | |
if upscale_image_path: | |
upscale_image = Image.open(upscale_image_path) | |
upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG") | |
return [image_path, DATA_PATH / f"upscale_image_{seed}.jpg"] | |
else: | |
return [image_path, image_path] | |
else: | |
return [image_path, image_path] | |
async def improve_prompt(prompt): | |
try: | |
instruction = ("With this idea, describe in English a detailed img2vid prompt in a single paragraph of up to 200 characters maximum, developing atmosphere, characters, lighting, and cameras.") | |
formatted_prompt = f"{prompt}: {instruction}" | |
response = llm_client.text_generation(formatted_prompt, max_new_tokens=200) | |
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip() | |
return improved_text | |
except Exception as e: | |
return f"Error mejorando el prompt: {e}" | |
def get_storage(): | |
files = [ | |
{ | |
"name": str(file.resolve()), | |
"size": file.stat().st_size, | |
} | |
for file in DATA_PATH.glob("*.jpg") | |
if file.is_file() | |
] | |
usage = sum([f['size'] for f in files]) | |
return [file["name"] for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB" | |
css = """ | |
#col-container{ margin: 0 auto; max-width: 1024px;} | |
""" | |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
output_res = ImageSlider(label="Generadas / Escaladas") | |
with gr.Column(scale=2): | |
prompt = gr.Textbox(label="Descripción de imagen") | |
basemodel_choice = gr.Dropdown( | |
label="Modelo", | |
choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], | |
value="black-forest-labs/FLUX.1-schnell" | |
) | |
lora_model_choice = gr.Dropdown( | |
label="LORA Realismo", | |
choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], | |
value="XLabs-AI/flux-RealismLora" | |
) | |
with gr.Row(): | |
process_lora = gr.Checkbox(label="Procesar LORA") | |
process_upscale = gr.Checkbox(label="Procesar Escalador") | |
improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False) | |
improve_btn = gr.Button("Mejorar prompt") | |
improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt) | |
with gr.Accordion(label="Opciones Avanzadas", open=False): | |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280) | |
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768) | |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2) | |
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10) | |
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20) | |
seed = gr.Number(label="Semilla", value=-1) | |
btn = gr.Button("Generar") | |
btn.click( | |
fn=gen, | |
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], | |
outputs=output_res | |
) | |
with gr.Row(): | |
with gr.Column(): | |
file_list = gr.Gallery(label="Imágenes Guardadas") # Usar Gallery en lugar de Files | |
storage_info = gr.Text(label="Uso de Almacenamiento") | |
refresh_btn = gr.Button("Actualizar Galería") | |
refresh_btn.click(fn=get_storage, inputs=None, outputs=[file_list, storage_info]) | |
demo.launch(allowed_paths=[str(DATA_PATH)]) |