flux3 / app.py
vilarin's picture
Update app.py
c530610 verified
raw
history blame
3.02 kB
import os
import gradio as gr
import torch
from diffusers import StableAudioPipeline
import spaces
from translatepy import Translator
import numpy as np
import random
import soundfile as sf
translator = Translator()
# Constants
model = "stabilityai/stable-audio-open-1.0"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
.gradio-container {
max-width: 690px !important;
}
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
DESCRIPTION = """
<center>
Stable Audio Open 1.0 generates variable-length (up to 47s) stereo audio at 44.1kHz from text prompts. \
It comprises three components: an autoencoder that compresses waveforms into a manageable sequence length, \
a T5-based text embedding for text conditioning, and a transformer-based diffusion (DiT) model that operates in the latent space of the autoencoder.
</center>
"""
pipe = StableAudioPipeline.from_pretrained(
model,
torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# Function
@spaces.GPU(duration=120)
def main(
prompt,
negative="low quality",
second: float = 10.0,
seed: int = -1):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
generator = torch.Generator().manual_seed(seed)
prompt = str(translator.translate(prompt, 'English'))
print(f'prompt:{prompt}')
audio = pipe(
prompt,
negative_prompt=negative,
audio_end_in_s=second,
num_inference_steps=200,
num_waveforms_per_prompt=3,
generator=generator,
).audios
os.makedirs("outputs", exist_ok=True)
base_count = len(glob(os.path.join("outputs", "*.mp4")))
audio_path = os.path.join("outputs", f"{base_count:06d}.wav")
sf.write(audio_path, audio[0].T.float().cpu().numpy(), pipe.vae.samping_rate)
return audio_path, seed
# Gradio Interface
with gr.Blocks(theme='soft', css=CSS, js=JS, title="Stable Audio Open") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
output = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio") # Create an output textbox
prompt = gr.Textbox(label="Prompt", placeholder="1000 BPM percussive sound of water drops")
negative = gr.Textbox(label="Negative prompt", placeholder="Low quality")
with gr.Row():
second = gr.Slider(5.0, 60.0, value=10.0, label="Second", step=0.1),
seed = gr.Slider(-1, MAX_SEED, value=-1, label="Seed", step=1),
with gr.Row():
submit_btn = gr.Button("πŸš€ Send") # Create a submit button
clear_btn = gr.ClearButton([prompt, seed, output], value="πŸ—‘οΈ Clear") # Create a clear button
# Set up the event listeners
submit_btn.click(main, inputs=[prompt, negative, second, seed], outputs=[output, seed])
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface