Spaces:
Running
Running
salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import random
|
5 |
-
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
import requests
|
8 |
import re
|
9 |
import asyncio
|
10 |
-
|
|
|
11 |
|
12 |
translator = Translator()
|
13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
14 |
basemodel = "black-forest-labs/FLUX.1-dev"
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
@@ -33,40 +35,12 @@ def enable_lora(lora_add):
|
|
33 |
else:
|
34 |
return lora_add
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
async def generate_image(
|
39 |
-
prompt:str,
|
40 |
-
model:str,
|
41 |
-
lora_word:str,
|
42 |
-
width:int=768,
|
43 |
-
height:int=1024,
|
44 |
-
scales:float=3.5,
|
45 |
-
steps:int=24,
|
46 |
-
seed:int=-1):
|
47 |
-
|
48 |
-
if seed == -1:
|
49 |
-
seed = random.randint(0, MAX_SEED)
|
50 |
-
seed = int(seed)
|
51 |
-
print(f'prompt:{prompt}')
|
52 |
-
|
53 |
-
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
54 |
-
|
55 |
-
try:
|
56 |
-
image = await client.text_to_image(
|
57 |
-
prompt=text,
|
58 |
-
height=height,
|
59 |
-
width=width,
|
60 |
-
guidance_scale=scales,
|
61 |
-
num_inference_steps=steps,
|
62 |
-
model=model,
|
63 |
-
)
|
64 |
-
except Exception as e:
|
65 |
-
raise gr.Error(f"Error in {e}")
|
66 |
-
|
67 |
-
return image, seed
|
68 |
|
69 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
|
|
70 |
client = Client("finegrain/finegrain-image-enhancer")
|
71 |
result = client.predict(
|
72 |
input_image=handle_file(img_path),
|
@@ -99,6 +73,30 @@ async def upscale_image(image, upscale_factor):
|
|
99 |
|
100 |
return result
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
async def gen(
|
103 |
prompt:str,
|
104 |
lora_add:str="XLabs-AI/flux-RealismLora",
|
@@ -108,7 +106,7 @@ async def gen(
|
|
108 |
scales:float=3.5,
|
109 |
steps:int=24,
|
110 |
seed:int=-1,
|
111 |
-
upscale_factor:int=
|
112 |
):
|
113 |
model = enable_lora(lora_add)
|
114 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
@@ -127,78 +125,11 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
127 |
sendBtn = gr.Button(scale=1, variant='primary')
|
128 |
with gr.Accordion("Opciones avanzadas", open=True):
|
129 |
with gr.Column(scale=1):
|
130 |
-
width = gr.Slider(
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
)
|
137 |
-
|
138 |
-
label="Alto",
|
139 |
-
minimum=512,
|
140 |
-
maximum=1280,
|
141 |
-
step=8,
|
142 |
-
value=1024,
|
143 |
-
)
|
144 |
-
scales = gr.Slider(
|
145 |
-
label="Guía",
|
146 |
-
minimum=3.5,
|
147 |
-
maximum=7,
|
148 |
-
step=0.1,
|
149 |
-
value=3.5,
|
150 |
-
)
|
151 |
-
steps = gr.Slider(
|
152 |
-
label="Pasos",
|
153 |
-
minimum=1,
|
154 |
-
maximum=100,
|
155 |
-
step=1,
|
156 |
-
value=24,
|
157 |
-
)
|
158 |
-
seed = gr.Slider(
|
159 |
-
label="Semillas",
|
160 |
-
minimum=-1,
|
161 |
-
maximum=MAX_SEED,
|
162 |
-
step=1,
|
163 |
-
value=-1,
|
164 |
-
)
|
165 |
-
lora_add = gr.Textbox(
|
166 |
-
label="Agregar Flux LoRA",
|
167 |
-
info="Modelo de LoRA a agregar",
|
168 |
-
lines=1,
|
169 |
-
value="XLabs-AI/flux-RealismLora",
|
170 |
-
)
|
171 |
-
lora_word = gr.Textbox(
|
172 |
-
label="Palabra clave de LoRA",
|
173 |
-
info="Palabra clave para activar el modelo de LoRA",
|
174 |
-
lines=1,
|
175 |
-
value="",
|
176 |
-
)
|
177 |
-
upscale_factor = gr.Radio(
|
178 |
-
label="Factor de escalado",
|
179 |
-
choices=[2, 3, 4],
|
180 |
-
value=2,
|
181 |
-
)
|
182 |
-
|
183 |
-
gr.on(
|
184 |
-
triggers=[
|
185 |
-
prompt.submit,
|
186 |
-
sendBtn.click,
|
187 |
-
],
|
188 |
-
fn=gen,
|
189 |
-
inputs=[
|
190 |
-
prompt,
|
191 |
-
lora_add,
|
192 |
-
lora_word,
|
193 |
-
width,
|
194 |
-
height,
|
195 |
-
scales,
|
196 |
-
steps,
|
197 |
-
seed,
|
198 |
-
upscale_factor
|
199 |
-
],
|
200 |
-
outputs=[img, seed]
|
201 |
-
)
|
202 |
-
|
203 |
-
if __name__ == "__main__":
|
204 |
-
demo.queue(api_open=False).launch(show_api=False, share=False)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from gradio_client import Client, handle_file
|
4 |
+
from huggingface_hub import login
|
5 |
+
from PIL import Image
|
6 |
import numpy as np
|
7 |
import random
|
|
|
8 |
from translatepy import Translator
|
9 |
import requests
|
10 |
import re
|
11 |
import asyncio
|
12 |
+
|
13 |
+
login(token=os.environ.get("HF_TOKEN", None), username=os.environ.get("HF_USERNAME", None))
|
14 |
|
15 |
translator = Translator()
|
|
|
16 |
basemodel = "black-forest-labs/FLUX.1-dev"
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
|
|
|
35 |
else:
|
36 |
return lora_add
|
37 |
|
38 |
+
def handle_file(img_path):
|
39 |
+
return Image.open(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
+
if upscale_factor == 0:
|
43 |
+
return handle_file(img_path)
|
44 |
client = Client("finegrain/finegrain-image-enhancer")
|
45 |
result = client.predict(
|
46 |
input_image=handle_file(img_path),
|
|
|
73 |
|
74 |
return result
|
75 |
|
76 |
+
async def generate_image(
|
77 |
+
prompt:str,
|
78 |
+
model:str,
|
79 |
+
lora_word:str,
|
80 |
+
width:int=768,
|
81 |
+
height:int=1024,
|
82 |
+
scales:float=3.5,
|
83 |
+
steps:int=24,
|
84 |
+
seed:int=-1
|
85 |
+
):
|
86 |
+
if seed == -1:
|
87 |
+
seed = random.randint(0, MAX_SEED)
|
88 |
+
seed = int(seed)
|
89 |
+
print(f'prompt:{prompt}')
|
90 |
+
|
91 |
+
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
92 |
+
|
93 |
+
try:
|
94 |
+
image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)))
|
95 |
+
except Exception as e:
|
96 |
+
raise gr.Error(f"Error in {e}")
|
97 |
+
|
98 |
+
return image, seed
|
99 |
+
|
100 |
async def gen(
|
101 |
prompt:str,
|
102 |
lora_add:str="XLabs-AI/flux-RealismLora",
|
|
|
106 |
scales:float=3.5,
|
107 |
steps:int=24,
|
108 |
seed:int=-1,
|
109 |
+
upscale_factor:int=0
|
110 |
):
|
111 |
model = enable_lora(lora_add)
|
112 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
|
|
125 |
sendBtn = gr.Button(scale=1, variant='primary')
|
126 |
with gr.Accordion("Opciones avanzadas", open=True):
|
127 |
with gr.Column(scale=1):
|
128 |
+
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768)
|
129 |
+
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024)
|
130 |
+
scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5)
|
131 |
+
steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1)
|
132 |
+
upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0)
|
133 |
+
seed = gr.Number(label="Semilla", value=-1)
|
134 |
+
sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img])
|
135 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|