File size: 14,355 Bytes
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172c740
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172c740
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172c740
 
 
 
 
 
 
 
5decbb5
 
 
 
 
 
 
 
 
d83a418
5decbb5
 
 
 
 
 
 
 
 
 
 
 
d83a418
5decbb5
 
 
 
d83a418
 
5decbb5
d83a418
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172c740
5decbb5
172c740
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
172c740
 
 
 
 
5decbb5
 
 
 
 
172c740
5decbb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
is_spaces = True if os.environ.get('SPACE_ID') else False

if(is_spaces):
    import spaces
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys

from dotenv import load_dotenv
load_dotenv()

# Add the current working directory to the Python path
sys.path.insert(0, os.getcwd())

import gradio as gr
from PIL import Image
import torch
import uuid
import os
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
if(not is_spaces):
    from toolkit.job import get_job

MAX_IMAGES = 150

def load_captioning(uploaded_images, concept_sentence):
    updates = []
    if len(uploaded_images) <= 1:
        raise gr.Error(
            "Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
        )
    elif len(uploaded_images) > MAX_IMAGES:
        raise gr.Error(
            f"For now, only {MAX_IMAGES} or less images are allowed for training"
        )
    # Update for the captioning_area
    #for _ in range(3):
    updates.append(gr.update(visible=True))
    # Update visibility and image for each captioning row and image
    for i in range(1, MAX_IMAGES + 1):
        # Determine if the current row and image should be visible
        visible = i <= len(uploaded_images)

        # Update visibility of the captioning row
        updates.append(gr.update(visible=visible))

        # Update for image component - display image if available, otherwise hide
        image_value = uploaded_images[i - 1] if visible else None
        
        updates.append(gr.update(value=image_value, visible=visible))

        #Update value of captioning area
        text_value = "[trigger]" if visible and concept_sentence else None
        updates.append(gr.update(value=text_value, visible=visible))

    #Update for the sample caption area
    updates.append(gr.update(visible=True))
    updates.append(gr.update(placeholder=f'A photo of {concept_sentence} holding a sign that reads "Hello friend"'))
    updates.append(gr.update(placeholder=f'A mountainous landscape in the style of {concept_sentence}'))
    updates.append(gr.update(placeholder=f'A {concept_sentence} in a mall'))
    return updates

if(is_spaces):
    load_captioning = spaces.GPU()(load_captioning)

def create_dataset(*inputs):
    print("Creating dataset")
    images = inputs[0]
    destination_folder = str(f"datasets/{uuid.uuid4()}")
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl')
    with open(jsonl_file_path, 'a') as jsonl_file:
        for index, image in enumerate(images):
            new_image_path = shutil.copy(image, destination_folder)
            
            original_caption = inputs[index + 1]
            file_name = os.path.basename(new_image_path)

            data = {"file_name": file_name, "prompt": original_caption}

            jsonl_file.write(json.dumps(data) + "\n")
    
    return destination_folder

def run_captioning(images, concept_sentence, *captions):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16
    model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
    processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)

    captions = list(captions)
    for i, image_path in enumerate(images):
        print(captions[i])
        if isinstance(image_path, str):  # If image is a file path
            image = Image.open(image_path).convert('RGB')
        
        prompt = "<DETAILED_CAPTION>"
        inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
        
        generated_ids = model.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=1024,
            num_beams=3
        )
        
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
        parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
        caption_text = parsed_answer['<DETAILED_CAPTION>'].replace("The image shows ", "")
        if(concept_sentence):
            caption_text = f"{caption_text} [trigger]"
        captions[i] = caption_text
        
            
        yield captions
    model.to("cpu")
    del model
    del processor
    
def start_training(
    lora_name,
    concept_sentence,
    steps,
    lr,
    rank,
    dataset_folder,
    sample_1,
    sample_2,
    sample_3,
):
    if not lora_name:
        raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
    print("Started training")
    slugged_lora_name = slugify(lora_name)

    # Load the default config
    with open("train_lora_flux_24gb.yaml", "r") as f:
        config = yaml.safe_load(f)

    # Update the config with user inputs
    config['config']['name'] = slugged_lora_name
    config['config']['process'][0]['model']['low_vram'] = True
    config['config']['process'][0]['train']['skip_first_sample'] = True
    config['config']['process'][0]['train']['steps'] = int(steps)
    config['config']['process'][0]['train']['lr'] = float(lr)
    config['config']['process'][0]['network']['linear'] = int(rank)
    config['config']['process'][0]['network']['linear_alpha'] = int(rank)
    config['config']['process'][0]['datasets'][0]['folder_path'] = dataset_folder
    if(concept_sentence):
        config['config']['process'][0]['trigger_word'] = concept_sentence
    if(sample_1 or sample_2 or sample_2):
        config['config']['process'][0]['train']['disable_sampling'] = False
        config['config']['process'][0]['sample']["sample_every"] = steps
        config['config']['process'][0]['sample']['prompts'] = []
        if(sample_1):
            config['config']['process'][0]['sample']['prompts'].append(sample_1)
        if(sample_2):
            config['config']['process'][0]['sample']['prompts'].append(sample_2)
        if(sample_3):
            config['config']['process'][0]['sample']['prompts'].append(sample_3)
    else:
        config['config']['process'][0]['train']['disable_sampling'] = True 
    # Save the updated config
    config_path = f"config/{slugged_lora_name}.yaml"
    with open(config_path, "w") as f:
        yaml.dump(config, f)
    if(is_spaces):
        pass
        #do the spacerunner things here
    else:
        #run the job locally
        job = get_job(config_path)
        job.run()
        job.cleanup()

    return f"Training completed successfully. Model saved as {slugged_lora_name}"

theme = gr.themes.Monochrome(
    text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
    font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
css = '''
#component-1{text-align:center}
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
.tabitem{border: 0px}
'''

def swap_visibilty(profile: gr.OAuthProfile | None):
    print(profile)
    if(is_spaces):
        if profile is None:
            return gr.update(elem_classes=["main_ui_logged_out"])
        else:
            print(profile.name)
            return gr.update(elem_classes=["main_ui_logged_in"])
    else:
        return gr.update(elem_classes=["main_ui_logged_in"])
        
with gr.Blocks(theme=theme, css=css) as demo:
    gr.Markdown('''# LoRA Ease for FLUX 🧞‍♂️
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)''')
    if(is_spaces):
        gr.LoginButton("Sign in with Hugging Face to train your LoRA on Spaces", visible=is_spaces)
    with gr.Tab("Train on Spaces" if is_spaces else "Train locally"):
        with gr.Column() as main_ui:
            with gr.Row():
                lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
                #training_option = gr.Radio(
                #    label="What are you training?", choices=["object", "style", "character", "face", "custom"]
                #)
                concept_sentence = gr.Textbox(
                    label="Trigger word/sentence",
                    info="Trigger word or sentence to be used",
                    placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
                    interactive=True,
                )
            with gr.Group(visible=True) as image_upload:
                with gr.Row():
                    images = gr.File(
                        file_types=["image"],
                        label="Upload your images",
                        file_count="multiple",
                        interactive=True,
                        visible=True,
                        scale=1,
                    )
                    with gr.Column(scale=3, visible=False) as captioning_area:
                        with gr.Column():
                            gr.Markdown("""# Custom captioning
    You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.
    """)
                            do_captioning = gr.Button("Add AI captions with Florence-2")
                            output_components = [captioning_area]
                            caption_list = []
                            for i in range(1, MAX_IMAGES + 1):
                                locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
                                with locals()[f"captioning_row_{i}"]:
                                    locals()[f"image_{i}"] = gr.Image(
                                        type="filepath",
                                        width=111,
                                        height=111,
                                        min_width=111,
                                        interactive=False,
                                        scale=2,
                                        show_label=False,
                                        show_share_button=False,
                                        show_download_button=False
                                    )
                                    locals()[f"caption_{i}"] = gr.Textbox(
                                        label=f"Caption {i}", scale=15, interactive=True
                                    )
        
                                output_components.append(locals()[f"captioning_row_{i}"])
                                output_components.append(locals()[f"image_{i}"])
                                output_components.append(locals()[f"caption_{i}"])
                                caption_list.append(locals()[f"caption_{i}"])
            
            with gr.Accordion("Advanced options", open=False):
                steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
                lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
                rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
                
            with gr.Accordion("Sample prompts", visible=False) as sample:
                gr.Markdown("Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)")
                sample_1 = gr.Textbox(label="Test prompt 1")
                sample_2 = gr.Textbox(label="Test prompt 2")
                sample_3 = gr.Textbox(label="Test prompt 3")
        
            output_components.append(sample)
            output_components.append(sample_1)
            output_components.append(sample_2)
            output_components.append(sample_3)
            start = gr.Button("Start training")
        progress_area = gr.Markdown("")

    with gr.Tab("Train locally" if is_spaces else "Instructions"):
        gr.Markdown(f'''To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!)
        ```bash
        git clone https://huggingface.co/spaces/flux-train/flux-lora-trainer
        cd flux-lora-trainer
        pip install requirements_local.txt
        ```
        
        Then you can install ai-toolkit
        ```bash
        git clone https://github.com/ostris/ai-toolkit.git
        cd ai-toolkit
        git submodule update --init --recursive
        python3 -m venv venv
        source venv/bin/activate
        # .\venv\Scripts\activate on windows
        # install torch first
        pip3 install torch
        pip3 install -r requirements.txt
        cd ..
        ```

        Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub
        ```bash
        huggingface-cli login
        ```
        
        Now you can run FLUX LoRA Ease locally by doing a simple 
        ```py
        python app.py
        ```
        If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly.
        ''')
        
    dataset_folder = gr.State()

    images.upload(
        load_captioning,
        inputs=[images, concept_sentence],
        outputs=output_components,
        queue=False
    )

    start.click(
        fn=create_dataset,
        inputs=[images] + caption_list,
        outputs=dataset_folder,
        queue=False
    ).then(
        fn=start_training_spaces if is_spaces else start_training,
        inputs=[
            lora_name,
            concept_sentence,
            steps,
            lr,
            rank,
            dataset_folder,
            sample_1,
            sample_2,
            sample_3,
        ],
        outputs=progress_area,
        queue=False
    )

    do_captioning.click(
        fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list
    )
    demo.load(fn=swap_visibilty, outputs=main_ui, queue=False)

if __name__ == "__main__":
    demo.queue()
    demo.launch(share=True)