File size: 17,089 Bytes
d945eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from sf3d.models.utils import BaseModule
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states, scale: float = 1.0):
args = ()
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class CrossAttention(nn.Module):
def __init__(
self,
dim,
kv_dim=None,
num_heads=16,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
kv_dim = dim if not kv_dim else kv_dim
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x_q, x_kv):
B, N_q, C = x_q.shape
B, N_kv, _ = x_kv.shape
# [B, N_q, C] -> [B, N_q, H, C/H]
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
# [B, N_kv, C] -> [B, N_kv, H, C/H]
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
# attention
x = torch.nn.functional.scaled_dot_product_attention(
q.permute(0, 2, 1, 3),
k.permute(0, 2, 1, 3),
v.permute(0, 2, 1, 3),
attn_mask=None,
dropout_p=self.attn_drop,
scale=self.scale,
).permute(0, 2, 1, 3)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N_q, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GEGLU(dim, inner_dim)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(nn.Linear(inner_dim, dim_out))
def forward(self, x: torch.Tensor) -> torch.Tensor:
for module in self.net:
x = module(x)
return x
class BasicBlock(nn.Module):
def __init__(
self,
dim: int,
kv_dim: Optional[int] = None,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn1 = CrossAttention(
dim,
kv_dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm2 = nn.LayerNorm(dim)
self.attn2 = CrossAttention(
dim,
kv_dim=kv_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm3 = nn.LayerNorm(dim)
self.ff = FeedForward(dim, dropout=ff_drop)
def forward(self, z, x):
z_norm = self.norm1(z)
z = z + self.attn1(z_norm, z_norm)
# TODO: do we need to have the second attention when x is None?
z_norm = self.norm2(z)
z = z + self.attn2(z_norm, x if x is not None else z_norm)
z_norm = self.norm3(z)
z = z + self.ff(z_norm)
return z
class SingleStreamTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 16
dropout: float = 0.0
norm_num_groups: int = 32
cross_attention_dim: Optional[int] = None
attention_bias: bool = False
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=1e-6,
affine=True,
)
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicBlock(
inner_dim,
kv_dim=self.cfg.cross_attention_dim,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels)
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs):
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states)
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous()
# TODO: do we really need to add the residual?
hidden_states = hidden_states + residual
return hidden_states
class FuseBlock(nn.Module):
"""
Fuse X in to Z with cross attention
"""
def __init__(
self,
dim_z: int,
dim_x: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
):
super().__init__()
self.norm_x_input = norm_x_input
if self.norm_x_input:
self.norm_x = nn.LayerNorm(dim_x)
self.attn = CrossAttention(
dim_z,
kv_dim=dim_x,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm_z1 = nn.LayerNorm(dim_z)
self.norm_z2 = nn.LayerNorm(dim_z)
self.ff = FeedForward(dim_z, dropout=ff_drop)
def forward(self, z, x):
# TODO: do we need to normalize x?
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x)
z = z + self.ff(self.norm_z2(z))
return z
@torch.no_grad()
def get_triplane_attention_mask(res):
N = 3 * res * res
attn_mask = torch.zeros(3, res, res, 3, res, res)
i, j = torch.meshgrid(torch.arange(res), torch.arange(res))
attn_mask[0, i, j, 1, i, :] = 1.0
attn_mask[0, i, j, 2, j, :] = 1.0
attn_mask[1, i, j, 0, i, :] = 1.0
attn_mask[1, i, j, 2, :, j] = 1.0
attn_mask[2, i, j, 0, :, i] = 1.0
attn_mask[2, i, j, 1, :, j] = 1.0
attn_mask = attn_mask.bool()
attn_bias = torch.empty_like(attn_mask, dtype=torch.float)
attn_bias.masked_fill_(attn_mask, 0.0)
attn_bias.masked_fill_(~attn_mask, float("-inf"))
return attn_bias.reshape(N, N)
class TriplaneAttention(nn.Module):
def __init__(
self,
dim: int,
resolution: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
full_attention: bool = False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.resolution = resolution
self.full_attention = full_attention
self.attn_mask = (
get_triplane_attention_mask(resolution) if not full_attention else None
)
def forward(self, x):
B, N, C = x.shape
# [B, N, C] -> [B, N, H, C/H]
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads)
# detokenize the planes
assert N == self.resolution**2 * 3
attn_bias = (
self.attn_mask.to(q)
.unsqueeze(0)
.unsqueeze(0)
.expand(B, self.num_heads, -1, -1)
if not self.full_attention
else None
)
# full attention
x = torch.nn.functional.scaled_dot_product_attention(
q.permute(0, 2, 1, 3),
k.permute(0, 2, 1, 3),
v.permute(0, 2, 1, 3),
attn_mask=attn_bias,
dropout_p=self.attn_drop,
scale=self.scale,
).permute(0, 2, 1, 3)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TwoStreamBlock(nn.Module):
def __init__(
self,
dim_latent: int,
dim_input: int,
num_basic_blocks: int = 4,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
dim_cross: Optional[int] = None,
):
super().__init__()
# Define the fuse block that fuse the input into the latent
self.fuse_block_in = FuseBlock(
dim_latent,
dim_input,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
# Define the transformer block that process the latent
self.transformer_block = nn.ModuleList(
[
BasicBlock(
dim_latent,
kv_dim=dim_cross,
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
ff_drop=ff_drop,
)
for _ in range(num_basic_blocks)
]
)
# Define the fuse block that fuse the latent into the input
self.fuse_block_out = FuseBlock(
dim_input,
dim_latent,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
def forward(self, latent, input, cross_input):
latent = self.fuse_block_in(latent, input)
for block in self.transformer_block:
latent = block(latent, cross_input)
input = self.fuse_block_out(input, latent)
return latent, input
class TwoStreamInterleaveTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 64
raw_triplane_channels: int = 1024
triplane_channels: int = 1024
raw_image_channels: int = 1024
num_latents: int = 1792
num_blocks: int = 4
num_basic_blocks: int = 3
dropout: float = 0.0
latent_init_std: float = 0.02
norm_num_groups: int = 32
attention_bias: bool = False
norm_x_input: bool = False
cross_attention_dim: int = 1024
mix_latent: bool = True
cfg: Config
def configure(self) -> None:
self.mix_latent = self.cfg.mix_latent
# Define the dimensions
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
self.num_latents = self.cfg.num_latents
self.latent_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
if self.cfg.norm_num_groups > 0:
self.norm_triplane = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.raw_triplane_channels,
eps=1e-6,
affine=True,
)
else:
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels)
self.proj_triplane = nn.Linear(
self.cfg.raw_triplane_channels, self.cfg.triplane_channels
)
if self.mix_latent:
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels)
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim)
self.norm_latent = nn.LayerNorm(self.latent_dim)
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim)
# Define the latents
self.latent_init = nn.Parameter(
torch.zeros(1, self.num_latents, self.latent_dim)
)
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std)
# Define the transformer blocks
self.main_blocks = nn.ModuleList(
[
TwoStreamBlock(
self.latent_dim,
self.cfg.triplane_channels,
num_basic_blocks=self.cfg.num_basic_blocks,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
norm_x_input=self.cfg.norm_x_input,
dim_cross=self.cfg.cross_attention_dim,
)
for _ in range(self.cfg.num_blocks)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(
self.cfg.triplane_channels, self.cfg.raw_triplane_channels
)
def forward(self, hidden_states, encoder_hidden_states, **kwargs):
# hidden_states: [B, triplane_dim, N_triplane] is triplane tokens
# encoder_hidden_states: [B, N_image, image_dim] is the image tokens
if isinstance(self.norm_triplane, nn.GroupNorm):
triplane_tokens = self.norm_triplane(hidden_states)
triplane_tokens = triplane_tokens.permute(
0, 2, 1
) # [B, N_triplane, triplane_dim]
elif isinstance(self.norm_triplane, nn.LayerNorm):
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1))
else:
raise ValueError("Unknown normalization layer")
triplane_tokens = self.proj_triplane(triplane_tokens)
if self.mix_latent:
image_tokens = self.norm_image(
encoder_hidden_states
) # [B, N_image, image_dim]
image_tokens = self.proj_image(image_tokens)
init_latents = self.latent_init.expand(
hidden_states.shape[0], -1, -1
) # [B, N_latent_init, latent_dim]
init_latents = self.norm_latent(init_latents)
init_latents = self.proj_latent(init_latents)
if self.mix_latent:
latent_tokens = torch.cat(
[image_tokens, init_latents], dim=1
) # [B, N_latent, latent_dim]
else:
latent_tokens = init_latents
# forward the main blocks
for block in self.main_blocks:
latent_tokens, triplane_tokens = block(
latent_tokens, triplane_tokens, encoder_hidden_states
)
# project the triplane tokens back to the original dimension
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous()
triplane_tokens = triplane_tokens + hidden_states
return triplane_tokens
|