File size: 18,221 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2b278
 
 
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2b278
 
d945eeb
0c2b278
d945eeb
 
 
 
 
 
 
 
 
 
 
 
0c2b278
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2b278
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import os
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from jaxtyping import Float
from omegaconf import OmegaConf
from PIL import Image
from safetensors.torch import load_model
from torch import Tensor

from sf3d.models.isosurface import MarchingTetrahedraHelper
from sf3d.models.mesh import Mesh
from sf3d.models.utils import (
    BaseModule,
    ImageProcessor,
    convert_data,
    dilate_fill,
    dot,
    find_class,
    float32_to_uint8_np,
    normalize,
    scale_tensor,
)
from sf3d.utils import create_intrinsic_from_fov_deg, default_cond_c2w


class SF3D(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        cond_image_size: int
        isosurface_resolution: int
        isosurface_threshold: float = 10.0
        radius: float = 1.0
        background_color: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
        default_fovy_deg: float = 40.0
        default_distance: float = 1.6

        camera_embedder_cls: str = ""
        camera_embedder: dict = field(default_factory=dict)

        image_tokenizer_cls: str = ""
        image_tokenizer: dict = field(default_factory=dict)

        tokenizer_cls: str = ""
        tokenizer: dict = field(default_factory=dict)

        backbone_cls: str = ""
        backbone: dict = field(default_factory=dict)

        post_processor_cls: str = ""
        post_processor: dict = field(default_factory=dict)

        decoder_cls: str = ""
        decoder: dict = field(default_factory=dict)

        image_estimator_cls: str = ""
        image_estimator: dict = field(default_factory=dict)

        global_estimator_cls: str = ""
        global_estimator: dict = field(default_factory=dict)

    cfg: Config

    @classmethod
    def from_pretrained(
        cls, pretrained_model_name_or_path: str, config_name: str, weight_name: str
    ):
        if os.path.isdir(pretrained_model_name_or_path):
            config_path = os.path.join(pretrained_model_name_or_path, config_name)
            weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
        else:
            config_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=config_name
            )
            weight_path = hf_hub_download(
                repo_id=pretrained_model_name_or_path, filename=weight_name
            )

        cfg = OmegaConf.load(config_path)
        OmegaConf.resolve(cfg)
        model = cls(cfg)
        load_model(model, weight_path)
        return model

    @property
    def device(self):
        return next(self.parameters()).device

    def configure(self):
        self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
            self.cfg.image_tokenizer
        )
        self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
        self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
            self.cfg.camera_embedder
        )
        self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
        self.post_processor = find_class(self.cfg.post_processor_cls)(
            self.cfg.post_processor
        )
        self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
        self.image_estimator = find_class(self.cfg.image_estimator_cls)(
            self.cfg.image_estimator
        )
        self.global_estimator = find_class(self.cfg.global_estimator_cls)(
            self.cfg.global_estimator
        )

        self.bbox: Float[Tensor, "2 3"]
        self.register_buffer(
            "bbox",
            torch.as_tensor(
                [
                    [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
                    [self.cfg.radius, self.cfg.radius, self.cfg.radius],
                ],
                dtype=torch.float32,
            ),
        )
        self.isosurface_helper = MarchingTetrahedraHelper(
            self.cfg.isosurface_resolution,
            os.path.join(
                os.path.dirname(__file__),
                "..",
                "load",
                "tets",
                f"{self.cfg.isosurface_resolution}_tets.npz",
            ),
        )

        self.image_processor = ImageProcessor()

    def triplane_to_meshes(
        self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
    ) -> list[Mesh]:
        meshes = []
        for i in range(triplanes.shape[0]):
            triplane = triplanes[i]
            grid_vertices = scale_tensor(
                self.isosurface_helper.grid_vertices.to(triplanes.device),
                self.isosurface_helper.points_range,
                self.bbox,
            )

            values = self.query_triplane(grid_vertices, triplane)
            decoded = self.decoder(values, include=["vertex_offset", "density"])
            sdf = decoded["density"] - self.cfg.isosurface_threshold

            deform = decoded["vertex_offset"].squeeze(0)

            mesh: Mesh = self.isosurface_helper(
                sdf.view(-1, 1), deform.view(-1, 3) if deform is not None else None
            )
            mesh.v_pos = scale_tensor(
                mesh.v_pos, self.isosurface_helper.points_range, self.bbox
            )

            meshes.append(mesh)

        return meshes

    def query_triplane(
        self,
        positions: Float[Tensor, "*B N 3"],
        triplanes: Float[Tensor, "*B 3 Cp Hp Wp"],
    ) -> Float[Tensor, "*B N F"]:
        batched = positions.ndim == 3
        if not batched:
            # no batch dimension
            triplanes = triplanes[None, ...]
            positions = positions[None, ...]
        assert triplanes.ndim == 5 and positions.ndim == 3

        positions = scale_tensor(
            positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
        )

        indices2D: Float[Tensor, "B 3 N 2"] = torch.stack(
            (positions[..., [0, 1]], positions[..., [0, 2]], positions[..., [1, 2]]),
            dim=-3,
        ).to(triplanes.dtype)
        out: Float[Tensor, "B3 Cp 1 N"] = F.grid_sample(
            rearrange(triplanes, "B Np Cp Hp Wp -> (B Np) Cp Hp Wp", Np=3).float(),
            rearrange(indices2D, "B Np N Nd -> (B Np) () N Nd", Np=3).float(),
            align_corners=True,
            mode="bilinear",
        )
        out = rearrange(out, "(B Np) Cp () N -> B N (Np Cp)", Np=3)

        return out

    def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
        # if batch[rgb_cond] is only one view, add a view dimension
        if len(batch["rgb_cond"].shape) == 4:
            batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
            batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
            batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
            batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
            batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)
        batch_size, n_input_views = batch["rgb_cond"].shape[:2]

        camera_embeds: Optional[Float[Tensor, "B Nv Cc"]]
        camera_embeds = self.camera_embedder(**batch)

        input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.image_tokenizer(
            rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
            modulation_cond=camera_embeds,
        )

        input_image_tokens = rearrange(
            input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
        )

        tokens: Float[Tensor, "B Ct Nt"] = self.tokenizer(batch_size)

        tokens = self.backbone(
            tokens,
            encoder_hidden_states=input_image_tokens,
            modulation_cond=None,
        )

        direct_codes = self.tokenizer.detokenize(tokens)
        scene_codes = self.post_processor(direct_codes)
        return scene_codes, direct_codes

    def run_image(
        self,
        image: Image,
        bake_resolution: int,
        estimate_illumination: bool = False,
    ) -> Tuple[trimesh.Trimesh, dict[str, Any]]:
        if image.mode != "RGBA":
            raise ValueError("Image must be in RGBA mode")
        img_cond = (
            torch.from_numpy(
                np.asarray(
                    image.resize((self.cfg.cond_image_size, self.cfg.cond_image_size))
                ).astype(np.float32)
                / 255.0
            )
            .float()
            .clip(0, 1)
            .to(self.device)
        )
        mask_cond = img_cond[:, :, -1:]
        rgb_cond = torch.lerp(
            torch.tensor(self.cfg.background_color, device=self.device)[None, None, :],
            img_cond[:, :, :3],
            mask_cond,
        )

        c2w_cond = default_cond_c2w(self.cfg.default_distance).to(self.device)
        intrinsic, intrinsic_normed_cond = create_intrinsic_from_fov_deg(
            self.cfg.default_fovy_deg,
            self.cfg.cond_image_size,
            self.cfg.cond_image_size,
        )

        batch = {
            "rgb_cond": rgb_cond,
            "mask_cond": mask_cond,
            "c2w_cond": c2w_cond.unsqueeze(0),
            "intrinsic_cond": intrinsic.to(self.device).unsqueeze(0),
            "intrinsic_normed_cond": intrinsic_normed_cond.to(self.device).unsqueeze(0),
        }

        meshes, global_dict = self.generate_mesh(
            batch, bake_resolution, estimate_illumination
        )
        return meshes[0], global_dict

    def generate_mesh(
        self,
        batch,
        bake_resolution: int,
        estimate_illumination: bool = False,
    ) -> Tuple[List[trimesh.Trimesh], dict[str, Any]]:
        from .texture_baker import TextureBaker

        baker = TextureBaker()
        batch["rgb_cond"] = self.image_processor(
            batch["rgb_cond"], self.cfg.cond_image_size
        )
        batch["mask_cond"] = self.image_processor(
            batch["mask_cond"], self.cfg.cond_image_size
        )
        scene_codes, non_postprocessed_codes = self.get_scene_codes(batch)

        global_dict = {}
        if self.image_estimator is not None:
            global_dict.update(
                self.image_estimator(batch["rgb_cond"] * batch["mask_cond"])
            )
        if self.global_estimator is not None and estimate_illumination:
            global_dict.update(self.global_estimator(non_postprocessed_codes))

        with torch.no_grad():
            with torch.autocast(device_type="cuda", enabled=False):
                meshes = self.triplane_to_meshes(scene_codes)

                rets = []
                for i, mesh in enumerate(meshes):
                    # Check for empty mesh
                    if mesh.v_pos.shape[0] == 0:
                        rets.append(trimesh.Trimesh())
                        continue

                    mesh.unwrap_uv()

                    # Build textures
                    rast = baker.rasterize(mesh.v_tex, mesh.t_pos_idx, bake_resolution)
                    bake_mask = baker.get_mask(rast)

                    pos_bake = baker.interpolate(
                        mesh.v_pos,
                        rast,
                        mesh.t_pos_idx,
                        mesh.v_tex,
                    )
                    gb_pos = pos_bake[bake_mask]

                    tri_query = self.query_triplane(gb_pos, scene_codes[i])[0]
                    decoded = self.decoder(
                        tri_query, exclude=["density", "vertex_offset"]
                    )

                    nrm = baker.interpolate(
                        mesh.v_nrm,
                        rast,
                        mesh.t_pos_idx,
                        mesh.v_tex,
                    )
                    gb_nrm = F.normalize(nrm[bake_mask], dim=-1)
                    decoded["normal"] = gb_nrm

                    # Check if any keys in global_dict start with decoded_
                    for k, v in global_dict.items():
                        if k.startswith("decoder_"):
                            decoded[k.replace("decoder_", "")] = v[i]

                    mat_out = {
                        "albedo": decoded["features"],
                        "roughness": decoded["roughness"],
                        "metallic": decoded["metallic"],
                        "normal": normalize(decoded["perturb_normal"]),
                        "bump": None,
                    }

                    for k, v in mat_out.items():
                        if v is None:
                            continue
                        if v.shape[0] == 1:
                            # Skip and directly add a single value
                            mat_out[k] = v[0]
                        else:
                            f = torch.zeros(
                                bake_resolution,
                                bake_resolution,
                                v.shape[-1],
                                dtype=v.dtype,
                                device=v.device,
                            )
                            if v.shape == f.shape:
                                continue
                            if k == "normal":
                                # Use un-normalized tangents here so that larger smaller tris
                                # Don't effect the tangents that much
                                tng = baker.interpolate(
                                    mesh.v_tng,
                                    rast,
                                    mesh.t_pos_idx,
                                    mesh.v_tex,
                                )
                                gb_tng = tng[bake_mask]
                                gb_tng = F.normalize(gb_tng, dim=-1)
                                gb_btng = F.normalize(
                                    torch.cross(gb_tng, gb_nrm, dim=-1), dim=-1
                                )
                                normal = F.normalize(mat_out["normal"], dim=-1)

                                bump = torch.cat(
                                    # Check if we have to flip some things
                                    (
                                        dot(normal, gb_tng),
                                        dot(normal, gb_btng),
                                        dot(normal, gb_nrm).clip(
                                            0.3, 1
                                        ),  # Never go below 0.3. This would indicate a flipped (or close to one) normal
                                    ),
                                    -1,
                                )
                                bump = (bump * 0.5 + 0.5).clamp(0, 1)

                                f[bake_mask] = bump.view(-1, 3)
                                mat_out["bump"] = f
                            else:
                                f[bake_mask] = v.view(-1, v.shape[-1])
                                mat_out[k] = f

                    def uv_padding(arr):
                        if arr.ndim == 1:
                            return arr
                        return (
                            dilate_fill(
                                arr.permute(2, 0, 1)[None, ...],
                                bake_mask.unsqueeze(0).unsqueeze(0),
                                iterations=bake_resolution // 150,
                            )
                            .squeeze(0)
                            .permute(1, 2, 0)
                        )

                    verts_np = convert_data(mesh.v_pos)
                    faces = convert_data(mesh.t_pos_idx)
                    uvs = convert_data(mesh.v_tex)

                    basecolor_tex = Image.fromarray(
                        float32_to_uint8_np(convert_data(uv_padding(mat_out["albedo"])))
                    ).convert("RGB")
                    basecolor_tex.format = "JPEG"

                    metallic = mat_out["metallic"].squeeze().cpu().item()
                    roughness = mat_out["roughness"].squeeze().cpu().item()

                    if "bump" in mat_out and mat_out["bump"] is not None:
                        bump_np = convert_data(uv_padding(mat_out["bump"]))
                        bump_up = np.ones_like(bump_np)
                        bump_up[..., :2] = 0.5
                        bump_up[..., 2:] = 1
                        bump_tex = Image.fromarray(
                            float32_to_uint8_np(
                                bump_np,
                                dither=True,
                                # Do not dither if something is perfectly flat
                                dither_mask=np.all(
                                    bump_np == bump_up, axis=-1, keepdims=True
                                ).astype(np.float32),
                            )
                        ).convert("RGB")
                        bump_tex.format = (
                            "JPEG"  # PNG would be better but the assets are larger
                        )
                    else:
                        bump_tex = None

                    material = trimesh.visual.material.PBRMaterial(
                        baseColorTexture=basecolor_tex,
                        roughnessFactor=roughness,
                        metallicFactor=metallic,
                        normalTexture=bump_tex,
                    )

                    tmesh = trimesh.Trimesh(
                        vertices=verts_np,
                        faces=faces,
                        visual=trimesh.visual.texture.TextureVisuals(
                            uv=uvs, material=material
                        ),
                    )
                    rot = trimesh.transformations.rotation_matrix(
                        np.radians(-90), [1, 0, 0]
                    )
                    tmesh.apply_transform(rot)
                    tmesh.apply_transform(
                        trimesh.transformations.rotation_matrix(
                            np.radians(90), [0, 1, 0]
                        )
                    )

                    tmesh.invert()

                    rets.append(tmesh)

        return rets, global_dict