|
import os |
|
import tempfile |
|
import time |
|
from functools import lru_cache |
|
from typing import Any |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import rembg |
|
import torch |
|
from gradio_litmodel3d import LitModel3D |
|
import spaces |
|
from PIL import Image |
|
|
|
import sf3d.utils as sf3d_utils |
|
from sf3d.system import SF3D |
|
|
|
rembg_session = rembg.new_session() |
|
|
|
COND_WIDTH = 512 |
|
COND_HEIGHT = 512 |
|
COND_DISTANCE = 1.6 |
|
COND_FOVY_DEG = 40 |
|
BACKGROUND_COLOR = [0.5, 0.5, 0.5] |
|
|
|
|
|
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE) |
|
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg( |
|
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH |
|
) |
|
|
|
|
|
model = SF3D.from_pretrained( |
|
"stabilityai/stable-fast-3d", |
|
config_name="config.yaml", |
|
weight_name="model.safetensors", |
|
) |
|
model.eval().cuda() |
|
|
|
example_files = [ |
|
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples") |
|
] |
|
|
|
|
|
@spaces.GPU |
|
def run_model(input_image): |
|
start = time.time() |
|
with torch.no_grad(): |
|
with torch.autocast(device_type="cuda", dtype=torch.float16): |
|
model_batch = create_batch(input_image) |
|
model_batch = {k: v.cuda() for k, v in model_batch.items()} |
|
trimesh_mesh, _glob_dict = model.generate_mesh(model_batch, 1024) |
|
trimesh_mesh = trimesh_mesh[0] |
|
|
|
|
|
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb") |
|
|
|
trimesh_mesh.export(tmp_file.name, file_type="glb") |
|
|
|
print("Generation took:", time.time() - start, "s") |
|
|
|
return tmp_file.name |
|
|
|
|
|
def create_batch(input_image: Image) -> dict[str, Any]: |
|
img_cond = ( |
|
torch.from_numpy( |
|
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) |
|
/ 255.0 |
|
) |
|
.float() |
|
.clip(0, 1) |
|
) |
|
mask_cond = img_cond[:, :, -1:] |
|
rgb_cond = torch.lerp( |
|
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond |
|
) |
|
|
|
batch_elem = { |
|
"rgb_cond": rgb_cond, |
|
"mask_cond": mask_cond, |
|
"c2w_cond": c2w_cond.unsqueeze(0), |
|
"intrinsic_cond": intrinsic.unsqueeze(0), |
|
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), |
|
} |
|
|
|
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()} |
|
return batched |
|
|
|
|
|
@lru_cache |
|
def checkerboard(squares: int, size: int, min_value: float = 0.5): |
|
base = np.zeros((squares, squares)) + min_value |
|
base[1::2, ::2] = 1 |
|
base[::2, 1::2] = 1 |
|
|
|
repeat_mult = size // squares |
|
return ( |
|
base.repeat(repeat_mult, axis=0) |
|
.repeat(repeat_mult, axis=1)[:, :, None] |
|
.repeat(3, axis=-1) |
|
) |
|
|
|
|
|
def remove_background(input_image: Image) -> Image: |
|
return rembg.remove(input_image, session=rembg_session) |
|
|
|
|
|
def resize_foreground( |
|
image: Image, |
|
ratio: float, |
|
) -> Image: |
|
image = np.array(image) |
|
assert image.shape[-1] == 4 |
|
alpha = np.where(image[..., 3] > 0) |
|
y1, y2, x1, x2 = ( |
|
alpha[0].min(), |
|
alpha[0].max(), |
|
alpha[1].min(), |
|
alpha[1].max(), |
|
) |
|
|
|
fg = image[y1:y2, x1:x2] |
|
|
|
size = max(fg.shape[0], fg.shape[1]) |
|
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 |
|
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 |
|
new_image = np.pad( |
|
fg, |
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
mode="constant", |
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
) |
|
|
|
|
|
new_size = int(new_image.shape[0] / ratio) |
|
|
|
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 |
|
ph1, pw1 = new_size - size - ph0, new_size - size - pw0 |
|
new_image = np.pad( |
|
new_image, |
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
mode="constant", |
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
) |
|
new_image = Image.fromarray(new_image, mode="RGBA").resize( |
|
(COND_WIDTH, COND_HEIGHT) |
|
) |
|
return new_image |
|
|
|
|
|
def square_crop(input_image: Image) -> Image: |
|
|
|
min_size = min(input_image.size) |
|
left = (input_image.size[0] - min_size) // 2 |
|
top = (input_image.size[1] - min_size) // 2 |
|
right = (input_image.size[0] + min_size) // 2 |
|
bottom = (input_image.size[1] + min_size) // 2 |
|
return input_image.crop((left, top, right, bottom)).resize( |
|
(COND_WIDTH, COND_HEIGHT) |
|
) |
|
|
|
|
|
def show_mask_img(input_image: Image) -> Image: |
|
img_numpy = np.array(input_image) |
|
alpha = img_numpy[:, :, 3] / 255.0 |
|
chkb = checkerboard(32, 512) * 255 |
|
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None]) |
|
return Image.fromarray(new_img.astype(np.uint8), mode="RGB") |
|
|
|
|
|
def run_button(run_btn, input_image, background_state, foreground_ratio): |
|
if run_btn == "Run": |
|
glb_file: str = run_model(background_state) |
|
|
|
return ( |
|
gr.update(), |
|
gr.update(), |
|
gr.update(), |
|
gr.update(), |
|
gr.update(value=glb_file, visible=True), |
|
gr.update(visible=True), |
|
) |
|
elif run_btn == "Remove Background": |
|
rem_removed = remove_background(input_image) |
|
|
|
sqr_crop = square_crop(rem_removed) |
|
fr_res = resize_foreground(sqr_crop, foreground_ratio) |
|
|
|
return ( |
|
gr.update(value="Run", visible=True), |
|
sqr_crop, |
|
fr_res, |
|
gr.update(value=show_mask_img(fr_res), visible=True), |
|
gr.update(value=None, visible=False), |
|
gr.update(visible=False), |
|
) |
|
|
|
|
|
def requires_bg_remove(image, fr): |
|
if image is None: |
|
return ( |
|
gr.update(visible=False, value="Run"), |
|
None, |
|
None, |
|
gr.update(value=None, visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
alpha_channel = np.array(image.getchannel("A")) |
|
min_alpha = alpha_channel.min() |
|
|
|
if min_alpha == 0: |
|
print("Already has alpha") |
|
sqr_crop = square_crop(image) |
|
fr_res = resize_foreground(sqr_crop, fr) |
|
return ( |
|
gr.update(value="Run", visible=True), |
|
sqr_crop, |
|
fr_res, |
|
gr.update(value=show_mask_img(fr_res), visible=True), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
return ( |
|
gr.update(value="Remove Background", visible=True), |
|
None, |
|
None, |
|
gr.update(value=None, visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
|
|
|
|
def update_foreground_ratio(img_proc, fr): |
|
foreground_res = resize_foreground(img_proc, fr) |
|
return ( |
|
foreground_res, |
|
gr.update(value=show_mask_img(foreground_res)), |
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
img_proc_state = gr.State() |
|
background_remove_state = gr.State() |
|
gr.Markdown(""" |
|
# SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement |
|
|
|
**SF3D** is a state-of-the-art method for 3D mesh reconstruction from a single image. |
|
This demo allows you to upload an image and generate a 3D mesh model from it. |
|
|
|
**Tips** |
|
1. If the image already has an alpha channel, you can skip the background removal step. |
|
2. You can adjust the foreground ratio to control the size of the foreground object. This can influence the shape |
|
3. You can upload your own HDR environment map to light the 3D model. |
|
""") |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_img = gr.Image( |
|
type="pil", label="Input Image", sources="upload", image_mode="RGBA" |
|
) |
|
preview_removal = gr.Image( |
|
label="Preview Background Removal", |
|
type="pil", |
|
image_mode="RGB", |
|
interactive=False, |
|
visible=False, |
|
) |
|
|
|
foreground_ratio = gr.Slider( |
|
label="Foreground Ratio", |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=0.85, |
|
step=0.05, |
|
) |
|
|
|
foreground_ratio.change( |
|
update_foreground_ratio, |
|
inputs=[img_proc_state, foreground_ratio], |
|
outputs=[background_remove_state, preview_removal], |
|
) |
|
|
|
run_btn = gr.Button("Run", variant="primary", visible=False) |
|
|
|
with gr.Column(): |
|
output_3d = LitModel3D( |
|
label="3D Model", |
|
visible=False, |
|
clear_color=[0.0, 0.0, 0.0, 0.0], |
|
tonemapping="aces", |
|
contrast=1.0, |
|
scale=1.0, |
|
) |
|
with gr.Column(visible=False, scale=1.0) as hdr_row: |
|
gr.Markdown("""## HDR Environment Map |
|
|
|
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps. |
|
""") |
|
|
|
with gr.Row(): |
|
hdr_illumination_file = gr.File( |
|
label="HDR Env Map", file_types=[".hdr"], file_count="single" |
|
) |
|
example_hdris = [ |
|
os.path.join("demo_files/hdri", f) |
|
for f in os.listdir("demo_files/hdri") |
|
] |
|
hdr_illumination_example = gr.Examples( |
|
examples=example_hdris, |
|
inputs=hdr_illumination_file, |
|
) |
|
|
|
hdr_illumination_file.change( |
|
lambda x: gr.update(env_map=x.name if x is not None else None), |
|
inputs=hdr_illumination_file, |
|
outputs=[output_3d], |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=example_files, |
|
inputs=input_img, |
|
) |
|
|
|
input_img.change( |
|
requires_bg_remove, |
|
inputs=[input_img, foreground_ratio], |
|
outputs=[ |
|
run_btn, |
|
img_proc_state, |
|
background_remove_state, |
|
preview_removal, |
|
output_3d, |
|
hdr_row, |
|
], |
|
) |
|
|
|
run_btn.click( |
|
run_button, |
|
inputs=[ |
|
run_btn, |
|
input_img, |
|
background_remove_state, |
|
foreground_ratio, |
|
], |
|
outputs=[ |
|
run_btn, |
|
img_proc_state, |
|
background_remove_state, |
|
preview_removal, |
|
output_3d, |
|
hdr_row, |
|
], |
|
) |
|
|
|
demo.launch() |
|
|