Etash Guha
some small changes
229e7eb
raw
history blame
4.43 kB
import streamlit as st
import openai
import os
import sys
import argparse
sys.path.append('./lats')
from lats_main import lats_main
st.set_page_config(layout="wide")
# Initialize session state variables if they don't exist.
if 'response_content' not in st.session_state:
st.session_state.response_content = None
# Creating main columns for the chat and runtime notifications
chat_col = st.container()
chat_col.title("CodeLATS")
description = """This demo is an implementation of Language Agent Tree Search (LATS) (https://arxiv.org/abs/2310.04406) with Samba-1 in the backend. Thank you to the original authors of demo on which this is based from [Lapis Labs](https://lapis.rocks/)
Listed below is an example programming problem (https://leetcode.com/problems/median-of-two-sorted-arrays/description/) to get started with.
```python
Given two sorted arrays `nums1` and `nums2` of size `m` and `n` respectively, return **the median** of the two sorted arrays. The overall run time complexity should be `O(log (m+n))`. **Example 1:** **Input:** nums1 = \[1,3\], nums2 = \[2\] **Output:** 2.00000 **Explanation:** merged array = \[1,2,3\] and median is 2. **Example 2:** **Input:** nums1 = \[1,2\], nums2 = \[3,4\] **Output:** 2.50000 **Explanation:** merged array = \[1,2,3,4\] and median is (2 + 3) / 2 = 2.5. **Constraints:** * `nums1.length == m` * `nums2.length == n` * `0 <= m <= 1000` * `0 <= n <= 1000` * `1 <= m + n <= 2000` * `-106 <= nums1[i], nums2[i] <= 106`
```
"""
chat_col.markdown(description)
sidebar = st.sidebar
# Runtime Section
runtime_container = st.container()
# Parameters Section
sidebar.title("From SambaNova Systems")
parameters_section = sidebar.expander("Parameters", expanded=False)
tree_width = parameters_section.number_input("Tree Width", min_value=1, max_value=5, value=1)
tree_depth = parameters_section.number_input("Tree Depth", min_value=1, max_value=8, value=3)
iterations = parameters_section.number_input("Iterations", min_value=1, max_value=4, value=2)
sidebar.markdown('<hr style="margin-top: 0.5rem; margin-bottom: 0.5rem;">', unsafe_allow_html=True)
with sidebar:
runtime_container = st.container()
runtime_container.empty()
runtime_messages = []
def make_args(instruction, tree_depth, tree_width, iterations):
parser = argparse.ArgumentParser()
parser.add_argument("--strategy", default="mcts", help="Strategy to use")
parser.add_argument("--language", default="py", help="Programming language")
parser.add_argument("--max_iters", default=iterations, help="Maximum iterations")
parser.add_argument("--instruction", default=instruction, help="Instruction text")
parser.add_argument("--verbose", action="store_true", help="Verbose output")
parser.add_argument("--is_leetcode", action='store_true',
help="To run the leetcode benchmark") # Temporary
parser.add_argument("--n_samples", type=int,
help="The number of nodes added during expansion", default=tree_width)
parser.add_argument("--depth", type=int,
help="Tree depth", default=tree_depth)
args = parser.parse_args()
return args
def run_querry():
if user_input:
# Create a new container for each subsequent message
runtime_container.write("Initiating process...")
# Make it so that prints go to runtime_container writes instead
old_stdout = sys.stdout
sys.stdout = runtime_container
with chat_col:
with st.spinner('Running...'):
args = make_args(user_input, tree_depth, tree_width, iterations)
setattr(args, 'model', 'samba')
# main call
response = lats_main(args)
sys.stdout = old_stdout
runtime_container.write("Response fetched.")
chat_col.markdown('<hr style="margin-top: 0.5rem; margin-bottom: 0.5rem;">', unsafe_allow_html=True)
chat_col.write(f"```python\n{response} \n")
return response
# User input section at the bottom of the page
with chat_col:
user_input = st.text_area("Enter your message here:", placeholder="Type your message here...", label_visibility="collapsed")
button = st.button("Send")
if button:
fail = False
if user_input == "":
st.warning("Missing a coding problem")
fail = True
if (not fail):
run_querry()