Spaces:
Runtime error
Runtime error
from generators.model import ModelBase, Message | |
import random | |
import streamlit as st | |
from typing import Union, List, Optional, Callable | |
def generic_generate_func_impl( | |
func_sig: str, | |
model: ModelBase, | |
strategy: str, | |
prev_func_impl, | |
feedback, | |
self_reflection, | |
num_comps, | |
temperature, | |
reflexion_chat_instruction: str, | |
reflexion_few_shot: str, | |
simple_chat_instruction: str, | |
reflexion_completion_instruction: str, | |
simple_completion_instruction: str, | |
code_block_instruction: str, | |
parse_code_block: Callable[[str], str], | |
add_code_block: Callable[[str], str] | |
) -> Union[str, List[str]]: | |
if strategy != "reflexion" and strategy != "simple": | |
raise ValueError( | |
f"Invalid strategy: given `{strategy}` but expected one of `reflexion` or `simple`") | |
if strategy == "reflexion" and (prev_func_impl is None or feedback is None or self_reflection is None): | |
raise ValueError( | |
f"Invalid arguments: given `strategy=reflexion` but `prev_func_impl`, `feedback`, or `self_reflection` is None") | |
if model.is_chat: | |
if strategy == "reflexion": | |
message = f"{reflexion_few_shot}\n[previous impl]:\n{add_code_block(prev_func_impl)}\n\n[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:\n{self_reflection}\n\n[improved impl]:\n{func_sig}" | |
prompt = f"{reflexion_chat_instruction}\n{code_block_instruction}" | |
# func_bodies is a really bad name, as it can also be just 1 string | |
print_messages(prompt, message) | |
messages = [ | |
Message( | |
role="system", | |
content=prompt, | |
), | |
Message( | |
role="user", # TODO: check this | |
content=reflexion_few_shot, | |
), | |
Message( | |
role="assistant", | |
content=add_code_block(prev_func_impl), | |
), | |
Message( | |
role="user", | |
content=f"[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:", | |
), | |
Message( | |
role="assistant", | |
content=self_reflection, | |
), | |
Message( | |
role="user", | |
content=f"[improved impl]:\n{func_sig}", | |
), | |
] | |
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) | |
else: | |
system_prompt = f"{simple_chat_instruction}\n{code_block_instruction}" | |
print_messages(system_prompt, func_sig) | |
messages = [ | |
Message( | |
role="system", | |
content=f"{simple_chat_instruction}\n{code_block_instruction}", | |
), | |
Message( | |
role="user", | |
content=func_sig, | |
), | |
] | |
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) | |
else: | |
if strategy == "reflexion": | |
prompt = f"{reflexion_completion_instruction}\n{add_code_block(prev_func_impl)}\n\nunit tests:\n{feedback}\n\nhint:\n{self_reflection}\n\n# improved implementation\n{func_sig}\n{code_block_instruction}" | |
func_bodies = model.generate( | |
prompt, num_comps=num_comps, temperature=temperature) | |
else: | |
prompt = f"{simple_completion_instruction}\n{func_sig}\n{code_block_instruction}" | |
func_bodies = model.generate( | |
prompt, num_comps=num_comps, temperature=temperature) | |
if num_comps == 1: | |
assert isinstance(func_bodies, str) | |
func_body_str = parse_code_block(func_bodies) | |
print_generated_func_body(func_body_str) | |
return func_body_str | |
else: | |
func_bodies = [parse_code_block(func_body) for func_body in func_bodies] | |
print_generated_func_body("\n\n".join(func_bodies)) | |
return func_bodies | |
def generate_with_accumulated_context( | |
func_sig: str, | |
model: ModelBase, | |
strategy: str, | |
prev_func_impl, | |
accumulated_feedback, | |
accumulated_reflection, | |
num_comps, | |
temperature, | |
reflexion_chat_instruction: str, | |
reflexion_few_shot: str, | |
simple_chat_instruction: str, | |
reflexion_completion_instruction: str, | |
simple_completion_instruction: str, | |
code_block_instruction: str, | |
parse_code_block: Callable[[str], str], | |
add_code_block: Callable[[str], str] | |
) -> Union[str, List[str]]: | |
# Ensure that the strategy is valid | |
if strategy != "reflexion" and strategy != "simple": | |
raise ValueError( | |
f"Invalid strategy: given `{strategy}` but expected one of `reflexion` or `simple`") | |
if strategy == "reflexion" and (prev_func_impl is None or accumulated_feedback is None or accumulated_reflection is None): | |
raise ValueError( | |
f"Invalid arguments: given `strategy=reflexion` but `prev_func_impl`, `feedback`, or `self_reflection` is None") | |
# Build the accumulated context from the provided feedback and reflections | |
accumulated_context = "\n\n".join( | |
[f"[previous impl {i+1}]:\n{add_code_block(impl)}\n[unit test results from previous impl {i+1}]:\n{feedback}\n[reflection on previous impl {i+1}]:\n{reflection}" | |
for i, (impl, feedback, reflection) in enumerate(zip(prev_func_impl, accumulated_feedback, accumulated_reflection))] | |
) | |
if model.is_chat: | |
if strategy == "reflexion": | |
# Constructing the message using a loop for accumulated context | |
messages = [ | |
Message(role="system", content=f"{reflexion_chat_instruction}\n{code_block_instruction}"), | |
Message(role="user", content=reflexion_few_shot) | |
] | |
for impl, feedback, reflection in zip(prev_func_impl, accumulated_feedback, accumulated_reflection): | |
messages.append(Message(role="assistant", content=add_code_block(impl))) | |
messages.append(Message(role="user", content=f"[unit test results from previous impl]:\n{feedback}\n\n[reflection on previous impl]:\n{reflection}")) | |
messages.append(Message(role="user", content=f"[improved impl]:\n{func_sig}")) | |
prompt = "\n".join([message.content for message in messages]) | |
message = (f"{reflexion_few_shot}\n{accumulated_context}\n\n[improved impl]:\n{func_sig}") | |
print_messages(prompt, message) | |
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) | |
else: | |
system_prompt = f"{simple_chat_instruction}\n{code_block_instruction}" | |
print_messages(system_prompt, func_sig) | |
messages = [ | |
Message(role="system", content=f"{simple_chat_instruction}\n{code_block_instruction}"), | |
Message(role="user", content=func_sig) | |
] | |
func_bodies = model.generate_chat(messages=messages, num_comps=num_comps, temperature=temperature) | |
else: | |
if strategy == "reflexion": | |
prompt = f"{reflexion_completion_instruction}\n{accumulated_context}\n\n# improved implementation\n{func_sig}\n{code_block_instruction}" | |
func_bodies = model.generate(prompt, num_comps=num_comps, temperature=temperature) | |
print_messages(prompt, "") | |
else: | |
prompt = f"{simple_completion_instruction}\n{func_sig}\n{code_block_instruction}" | |
func_bodies = model.generate(prompt, num_comps=num_comps, temperature=temperature) | |
print_messages(prompt, "") | |
if num_comps == 1: | |
assert isinstance(func_bodies, str) | |
func_body_str = parse_code_block(func_bodies) | |
print_generated_func_body(func_body_str) | |
return func_body_str | |
else: | |
func_bodies = [parse_code_block(func_body) for func_body in func_bodies] | |
print_generated_func_body("\n\n".join(func_bodies)) | |
return func_bodies | |
def generic_generate_internal_tests( | |
func_sig: str, | |
model: ModelBase, | |
max_num_tests: int, | |
test_generation_few_shot: str, | |
test_generation_chat_instruction: str, | |
test_generation_completion_instruction: str, | |
parse_tests: Callable[[str], List[str]], | |
is_syntax_valid: Callable[[str], bool], | |
is_react: bool = False | |
) -> List[str]: | |
"""Generates tests for a function.""" | |
if model.is_chat: | |
if is_react: | |
messages = [ | |
Message( | |
role="system", | |
content=test_generation_chat_instruction, | |
), | |
Message( | |
role="user", | |
content=f"{test_generation_few_shot}\n\n[func signature]:\n{func_sig}\n\n[think]:" | |
) | |
] | |
output = model.generate_chat(messages=messages, max_tokens=1024) | |
print(f'React test generation output: {output}') | |
else: | |
messages = [ | |
Message( | |
role="system", | |
content=test_generation_chat_instruction, | |
), | |
Message( | |
role="user", | |
content=f"{test_generation_few_shot}\n\n[func signature]:\n{func_sig}\n\n[unit tests]:", | |
) | |
] | |
output = model.generate_chat(messages=messages, max_tokens=1024) | |
else: | |
prompt = f'{test_generation_completion_instruction}\n\nfunc signature:\n{func_sig}\nunit tests:' | |
output = model.generate(prompt, max_tokens=1024) | |
all_tests = parse_tests(output) # type: ignore | |
valid_tests = [test for test in all_tests if is_syntax_valid(test)] | |
# print(valid_tests) | |
return (valid_tests) | |
def generic_generate_self_reflection( | |
func: str, | |
feedback: str, | |
model: ModelBase, | |
self_reflection_chat_instruction: str, | |
self_reflection_completion_instruction: str, | |
add_code_block: Callable[[str], str], | |
self_reflection_few_shot: Optional[str] = None, | |
) -> str: | |
if model.is_chat: | |
if self_reflection_few_shot is not None: | |
messages = [ | |
Message( | |
role="system", | |
content=self_reflection_chat_instruction, | |
), | |
Message( | |
role="user", | |
content=f'{self_reflection_few_shot}\n\n[function impl]:\n{add_code_block(func)}\n\n[unit test results]:\n{feedback}\n\n[self-reflection]:', | |
) | |
] | |
reflection = model.generate_chat(messages=messages) | |
print(f'|Self reflection output|: {reflection}') | |
else: | |
messages = [ | |
Message( | |
role="system", | |
content=self_reflection_chat_instruction, | |
), | |
Message( | |
role="user", | |
content=f'[function impl]:\n{add_code_block(func)}\n\n[unit test results]:\n{feedback}\n\n[self-reflection]:', | |
) | |
] | |
reflection = model.generate_chat(messages=messages) | |
else: | |
reflection = model.generate( | |
f'{self_reflection_completion_instruction}\n{add_code_block(func)}\n\n{feedback}\n\nExplanation:') | |
return reflection # type: ignore | |
def sample_n_random(items: List[str], n: int) -> List[str]: | |
"""Sample min(n, len(items)) random items from a list""" | |
assert n >= 0 | |
if n >= len(items): | |
return items | |
return random.sample(items, n) | |
def print_messages(system_message_text: str, user_message_text: str) -> None: | |
print(f"""{system_message_text}""") | |
print(f"""{user_message_text} \n""") | |
def print_generated_func_body(func_body_str: str) -> None: | |
print(f"""|GENERATED FUNCTION BODY| \n | |
```python\n{func_body_str} \n | |
""") | |