File size: 10,295 Bytes
077e61f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import random
import openai
from openai import APIError, APIConnectionError, RateLimitError
import os
from PIL import Image  # This is the corrected import
import io
import base64
import asyncio
from queue import Queue
from threading import Thread
import time

# Get the current script's directory
current_dir = os.path.dirname(os.path.abspath(__file__))
avatars_dir = os.path.join(current_dir, "avatars")

# Dictionary mapping characters to their avatar image filenames
character_avatars = {
    "Harry Potter": "harry.png",
    "Hermione Granger": "hermione.png",
    "poor Ph.D. student": "phd.png",
    "Donald Trump": "trump.png",
    "a super cute red panda": "red_panda.png"
}


predefined_characters = ["Harry Potter", "Hermione Granger",  "poor Ph.D. student", "Donald Trump", "a super cute red panda"]

def get_character(dropdown_value, custom_value):
    return custom_value if dropdown_value == "Custom" else dropdown_value

def resize_image(image_path, size=(100, 100)):
    if not os.path.exists(image_path):
        return None
    with Image.open(image_path) as img:
        img.thumbnail(size)
        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode()

resized_avatars = {}
for character, filename in character_avatars.items():
    full_path = os.path.join(avatars_dir, filename)
    if os.path.exists(full_path):
        resized_avatars[character] = resize_image(full_path)
    else:
        pass

async def generate_response_stream(messages, api_key):
    client = openai.AsyncOpenAI(
        api_key=api_key,
        base_url="https://api.sambanova.ai/v1",
    )
    try:
        if len(messages) >= 10:
            # avoid hitting rate limit
            time.sleep(0.5)
        response = await client.chat.completions.create(
            model='Meta-Llama-3.1-405B-Instruct',
            messages=messages,
            temperature=0.7,
            top_p=0.9,
            stream=True
        )
        full_response = ""
        async for chunk in response:
            if chunk.choices[0].delta.content is not None:
                full_response += chunk.choices[0].delta.content
                yield full_response
    except Exception as e:
        yield f"Error: {str(e)}"

async def simulate_conversation_stream(character1, character2, initial_message, num_turns, api_key):
    messages_character_1 = [{"role": "system", "content": f"Avoid overly verbose answer in your response. Act as {character1}."},
                            {"role": "assistant", "content": initial_message}]
    messages_character_2 = [{"role": "system", "content": f"Avoid overly verbose answer in your response. Act as {character2}."},
                            {"role": "user", "content": initial_message}]
    
    conversation = [
        {"character": character1, "content": initial_message},
        {"character": character2, "content": ""}  # Initialize with an empty response for character2
    ]
    yield format_conversation_as_html(conversation)
    num_turns *= 2
    for turn_num in range(num_turns - 1):
        current_character = character2 if turn_num % 2 == 0 else character1
        messages = messages_character_2 if turn_num % 2 == 0 else messages_character_1

        full_response = ""
        async for response in generate_response_stream(messages, api_key):
            full_response = response
            conversation[-1]["content"] = full_response
            yield format_conversation_as_html(conversation)

        if turn_num % 2 == 0:
            messages_character_1.append({"role": "user", "content": full_response})
            messages_character_2.append({"role": "assistant", "content": full_response})
        else:
            messages_character_2.append({"role": "user", "content": full_response})
            messages_character_1.append({"role": "assistant", "content": full_response})
        
        # Add a new empty message for the next turn, if it's not the last turn
        if turn_num < num_turns - 2:
            next_character = character1 if turn_num % 2 == 0 else character2
            conversation.append({"character": next_character, "content": ""})

def stream_conversation(character1, character2, initial_message, num_turns, api_key, queue):
    async def run_simulation():
        async for html in simulate_conversation_stream(character1, character2, initial_message, num_turns, api_key):
            queue.put(html)
        queue.put(None)  # Signal that the conversation is complete

    asyncio.run(run_simulation())

def chat_interface(character1_dropdown, character1_custom, character2_dropdown, character2_custom, 
    initial_message, num_turns, api_key):

    character1 = get_character(character1_dropdown, character1_custom)
    character2 = get_character(character2_dropdown, character2_custom)

    queue = Queue()
    thread = Thread(target=stream_conversation, args=(character1, character2, initial_message, num_turns, api_key, queue))
    thread.start()

    while True:
        result = queue.get()
        if result is None:
            break
        yield result
    
    thread.join()

def format_conversation_as_html(conversation):
    html_output = """
    <style>
    .chat-container {
        display: flex;
        flex-direction: column;
        gap: 10px;
        font-family: Arial, sans-serif;
    }
    .message {
        display: flex;
        padding: 10px;
        border-radius: 10px;
        max-width: 80%;
        align-items: flex-start;
    }
    .left {
        align-self: flex-start;
        background-color: #1565C0;
        color: #FFFFFF;
    }
    .right {
        align-self: flex-end;
        background-color: #2E7D32;
        color: #FFFFFF;
        flex-direction: row-reverse;
    }
    .avatar-container {
        flex-shrink: 0;
        width: 40px;
        height: 40px;
        margin: 0 10px;
    }
    .avatar {
        width: 100%;
        height: 100%;
        border-radius: 50%;
        object-fit: cover;
    }
    .message-content {
        display: flex;
        flex-direction: column;
        min-width: 150px;
        flex-grow: 1;
    }
    .character-name {
        font-weight: bold;
        margin-bottom: 5px;
    }
    .message-text {
        word-wrap: break-word;
        overflow-wrap: break-word;
    }
    </style>
    <div class="chat-container">
    """
    
    for i, message in enumerate(conversation):
        align = "left" if i % 2 == 0 else "right"
        avatar_data = resized_avatars.get(message["character"])
        
        html_output += f'<div class="message {align}">'
        
        if avatar_data:
            html_output += f'''
            <div class="avatar-container">
                <img src="data:image/png;base64,{avatar_data}" class="avatar" alt="{message["character"]} avatar">
            </div>
            '''
        
        html_output += f'''
        <div class="message-content">
            <div class="character-name">{message["character"]}</div>
            <div class="message-text">{message["content"]}</div>
        </div>
        </div>
        '''
    
    html_output += "</div>"
    return html_output


def format_chat_for_download(html_chat):
    # Extract text content from HTML
    import re
    chat_text = re.findall(r'<div class="character-name">(.*?)</div>.*?<div class="message-text">(.*?)</div>', html_chat, re.DOTALL)
    return "\n".join([f"{speaker.strip()}: {message.strip()}" for speaker, message in chat_text])

def save_chat_to_file(chat_content):
    # Create a downloads directory if it doesn't exist
    downloads_dir = os.path.join(os.getcwd(), "downloads")
    os.makedirs(downloads_dir, exist_ok=True)
    
    # Generate a unique filename
    import datetime
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"chat_{timestamp}.txt"
    file_path = os.path.join(downloads_dir, filename)
    
    # Save the chat content to the file
    with open(file_path, "w", encoding="utf-8") as f:
        f.write(chat_content)
    
    return file_path
    

with gr.Blocks() as app:
    gr.Markdown("# Character Chat Generator")
    
    gr.Markdown("Powerd by [LLama3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) on [SambaNova Cloud](https://cloud.sambanova.ai/apis)")
    api_key = gr.Textbox(label="Enter your Sambanova Cloud API Key\n(To get one, go to https://cloud.sambanova.ai/apis)", type="password")
    
    with gr.Column():
            character1_dropdown = gr.Dropdown(choices=predefined_characters + ["Custom"], label="Select Character 1")
            character1_custom = gr.Textbox(label="Custom Character 1 (if selected above)", visible=False)
    with gr.Column():
        character2_dropdown = gr.Dropdown(choices=predefined_characters + ["Custom"], label="Select Character 2")
        character2_custom = gr.Textbox(label="Custom Character 2 (if selected above)", visible=False)
    
    initial_message = gr.Textbox(label="Initial message (for Character 1)")
    num_turns = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of conversation turns")
    
    generate_btn = gr.Button("Generate Conversation")
    output = gr.HTML(label="Generated Conversation")
    

    def show_custom_input(choice):
        return gr.update(visible=choice == "Custom")

    character1_dropdown.change(show_custom_input, inputs=character1_dropdown, outputs=character1_custom)
    character2_dropdown.change(show_custom_input, inputs=character2_dropdown, outputs=character2_custom)
    
    generate_btn.click(
        chat_interface,
        inputs=[character1_dropdown, character1_custom, character2_dropdown, 
        character2_custom, initial_message, num_turns, api_key],
        outputs=output,
    )
    
    gr.Markdown("## Download Chat History")
    
    download_btn = gr.Button("Download Conversation")
    download_output = gr.File(label="Download")

    def download_conversation(html_chat):
        chat_content = format_chat_for_download(html_chat)
        file_path = save_chat_to_file(chat_content)
        return file_path

    download_btn.click(
        download_conversation,
        inputs=output,
        outputs=download_output
    )

if __name__ == "__main__":
    app.launch()