Spaces:
Runtime error
Runtime error
File size: 4,205 Bytes
a6c26b1 7801fa3 a6c26b1 3b758aa a6c26b1 3b758aa a6c26b1 e443083 3b758aa a6c26b1 e443083 a6c26b1 e443083 a6c26b1 7801fa3 5ab5b15 e443083 a6c26b1 a9bf317 a6c26b1 a9bf317 a6c26b1 cdb15e7 5ab5b15 7801fa3 a9bf317 5ab5b15 3b758aa a6c26b1 3b758aa a6c26b1 aa94ed8 3b758aa aa94ed8 3b758aa 5ab5b15 a84e3d2 a6c26b1 a84e3d2 a6c26b1 a9bf317 a6c26b1 a84e3d2 a6c26b1 a84e3d2 a6c26b1 a84e3d2 5ab5b15 a9bf317 a6c26b1 a84e3d2 a6c26b1 a84e3d2 5ab5b15 a6c26b1 5ab5b15 3b758aa aa94ed8 a6c26b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import sys
import yaml
import gradio as gr
import uuid
current_dir = os.path.dirname(os.path.abspath(__file__))
from src.document_retrieval import DocumentRetrieval
from utils.parsing.sambaparse import parse_doc_universal # added
from utils.vectordb.vector_db import VectorDb
def handle_userinput(user_question, conversation_chain, history):
if user_question:
try:
# Generate response
response = conversation_chain.invoke({"question": user_question})
# Append user message and response to chat history
history = history + [(user_question, response["answer"])]
return history, ""
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
history = history + [(user_question, error_msg)]
return history, ""
else:
return history, ""
def process_documents(files, collection_name, document_retrieval, vectorstore, conversation_chain, api_key=None):
try:
if api_key:
sambanova_api_key = api_key
else:
sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
document_retrieval = DocumentRetrieval(sambanova_api_key)
_, _, text_chunks = parse_doc_universal(doc=files)
print(f'nb of chunks: {len(text_chunks)}')
embeddings = document_retrieval.load_embedding_model()
collection_id = str(uuid.uuid4())
collection_name = f"collection_{collection_id}"
vectorstore = document_retrieval.create_vector_store(text_chunks, embeddings, output_db=None, collection_name=collection_name)
document_retrieval.init_retriever(vectorstore)
conversation_chain = document_retrieval.get_qa_retrieval_chain()
return conversation_chain, vectorstore, document_retrieval, collection_name, "Complete! You can now ask questions."
except Exception as e:
return conversation_chain, vectorstore, document_retrieval, collection_name, f"An error occurred while processing: {str(e)}"
caution_text = """⚠️ Note: depending on the size of your document, this could take several minutes.
"""
with gr.Blocks() as demo:
vectorstore = gr.State()
conversation_chain = gr.State()
document_retrieval = gr.State()
collection_name=gr.State()
gr.Markdown("# Enterprise Knowledge Retriever",
elem_id="title")
gr.Markdown("Powered by LLama3.1-8B-Instruct on SambaNova Cloud. Get your API key [here](https://cloud.sambanova.ai/apis).")
api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability")
# Step 1: Add PDF file
gr.Markdown("## 1️⃣ Upload PDF")
docs = gr.File(label="Add PDF file (single)", file_types=["pdf"], file_count="single")
# Step 2: Process PDF file
gr.Markdown(("## 2️⃣ Process document and create vector store"))
db_btn = gr.Radio(["ChromaDB"], label="Vector store type", value = "ChromaDB", type="index", info="Choose your vector store")
setup_output = gr.Textbox(label="Processing status", visible=True, value="None")
process_btn = gr.Button("🔄 Process")
gr.Markdown(caution_text)
# Preprocessing events
process_btn.click(process_documents, inputs=[docs, collection_name, document_retrieval, vectorstore, conversation_chain, api_key], outputs=[conversation_chain, vectorstore, document_retrieval, collection_name, setup_output], concurrency_limit=20)
# Step 3: Chat with your data
gr.Markdown("## 3️⃣ Chat with your document")
chatbot = gr.Chatbot(label="Chatbot", show_label=True, show_share_button=False, show_copy_button=True, likeable=True)
msg = gr.Textbox(label="Ask questions about your data", show_label=True, placeholder="Enter your message...")
clear_btn = gr.Button("Clear chat")
sources_output = gr.Textbox(label="Sources", visible=False)
# Chatbot events
msg.submit(handle_userinput, inputs=[msg, conversation_chain, chatbot], outputs=[chatbot, msg], queue=False)
clear_btn.click(lambda: [None, ""], inputs=None, outputs=[chatbot, msg], queue=False)
if __name__ == "__main__":
demo.launch()
|