Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import sys | |
from typing import Optional, Dict | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.language_models.chat_models import BaseChatModel | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
utils_dir = os.path.abspath(os.path.join(current_dir, '..')) | |
repo_dir = os.path.abspath(os.path.join(utils_dir, '..')) | |
sys.path.append(utils_dir) | |
sys.path.append(repo_dir) | |
from utils.model_wrappers.langchain_embeddings import SambaStudioEmbeddings | |
from utils.model_wrappers.langchain_llms import SambaStudio | |
from utils.model_wrappers.langchain_llms import SambaNovaCloud | |
from utils.model_wrappers.langchain_chat_models import ChatSambaNovaCloud | |
EMBEDDING_MODEL = 'intfloat/e5-large-v2' | |
NORMALIZE_EMBEDDINGS = True | |
# Configure the logger | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s [%(levelname)s] - %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
], | |
) | |
logger = logging.getLogger(__name__) | |
class APIGateway: | |
def load_embedding_model( | |
type: str = 'cpu', | |
batch_size: Optional[int] = None, | |
coe: bool = False, | |
select_expert: Optional[str] = None, | |
sambastudio_embeddings_base_url: Optional[str] = None, | |
sambastudio_embeddings_base_uri: Optional[str] = None, | |
sambastudio_embeddings_project_id: Optional[str] = None, | |
sambastudio_embeddings_endpoint_id: Optional[str] = None, | |
sambastudio_embeddings_api_key: Optional[str] = None, | |
) -> Embeddings: | |
"""Loads a langchain embedding model given a type and parameters | |
Args: | |
type (str): wether to use sambastudio embedding model or in local cpu model | |
batch_size (int, optional): batch size for sambastudio model. Defaults to None. | |
coe (bool, optional): whether to use coe model. Defaults to False. only for sambastudio models | |
select_expert (str, optional): expert model to be used when coe selected. Defaults to None. | |
only for sambastudio models. | |
sambastudio_embeddings_base_url (str, optional): base url for sambastudio model. Defaults to None. | |
sambastudio_embeddings_base_uri (str, optional): endpoint base uri for sambastudio model. Defaults to None. | |
sambastudio_embeddings_project_id (str, optional): project id for sambastudio model. Defaults to None. | |
sambastudio_embeddings_endpoint_id (str, optional): endpoint id for sambastudio model. Defaults to None. | |
sambastudio_embeddings_api_key (str, optional): api key for sambastudio model. Defaults to None. | |
Returns: | |
langchain embedding model | |
""" | |
if type == 'sambastudio': | |
envs = { | |
'sambastudio_embeddings_base_url': sambastudio_embeddings_base_url, | |
'sambastudio_embeddings_base_uri': sambastudio_embeddings_base_uri, | |
'sambastudio_embeddings_project_id': sambastudio_embeddings_project_id, | |
'sambastudio_embeddings_endpoint_id': sambastudio_embeddings_endpoint_id, | |
'sambastudio_embeddings_api_key': sambastudio_embeddings_api_key, | |
} | |
envs = {k: v for k, v in envs.items() if v is not None} | |
if coe: | |
if batch_size is None: | |
batch_size = 1 | |
embeddings = SambaStudioEmbeddings( | |
**envs, batch_size=batch_size, model_kwargs={'select_expert': select_expert} | |
) | |
else: | |
if batch_size is None: | |
batch_size = 32 | |
embeddings = SambaStudioEmbeddings(**envs, batch_size=batch_size) | |
elif type == 'cpu': | |
encode_kwargs = {'normalize_embeddings': NORMALIZE_EMBEDDINGS} | |
embedding_model = EMBEDDING_MODEL | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name=embedding_model, | |
embed_instruction='', # no instruction is needed for candidate passages | |
query_instruction='Represent this sentence for searching relevant passages: ', | |
encode_kwargs=encode_kwargs, | |
) | |
else: | |
raise ValueError(f'{type} is not a valid embedding model type') | |
return embeddings | |
def load_llm( | |
type: str, | |
streaming: bool = False, | |
coe: bool = False, | |
do_sample: Optional[bool] = None, | |
max_tokens_to_generate: Optional[int] = None, | |
temperature: Optional[float] = None, | |
select_expert: Optional[str] = None, | |
top_p: Optional[float] = None, | |
top_k: Optional[int] = None, | |
repetition_penalty: Optional[float] = None, | |
stop_sequences: Optional[str] = None, | |
process_prompt: Optional[bool] = False, | |
sambastudio_base_url: Optional[str] = None, | |
sambastudio_base_uri: Optional[str] = None, | |
sambastudio_project_id: Optional[str] = None, | |
sambastudio_endpoint_id: Optional[str] = None, | |
sambastudio_api_key: Optional[str] = None, | |
sambanova_url: Optional[str] = None, | |
sambanova_api_key: Optional[str] = None, | |
) -> LLM: | |
"""Loads a langchain Sambanova llm model given a type and parameters | |
Args: | |
type (str): wether to use sambastudio, or SambaNova Cloud model "sncloud" | |
streaming (bool): wether to use streaming method. Defaults to False. | |
coe (bool): whether to use coe model. Defaults to False. | |
do_sample (bool) : Optional wether to do sample. | |
max_tokens_to_generate (int) : Optional max number of tokens to generate. | |
temperature (float) : Optional model temperature. | |
select_expert (str) : Optional expert to use when using CoE models. | |
top_p (float) : Optional model top_p. | |
top_k (int) : Optional model top_k. | |
repetition_penalty (float) : Optional model repetition penalty. | |
stop_sequences (str) : Optional model stop sequences. | |
process_prompt (bool) : Optional default to false. | |
sambastudio_base_url (str): Optional SambaStudio environment URL". | |
sambastudio_base_uri (str): Optional SambaStudio-base-URI". | |
sambastudio_project_id (str): Optional SambaStudio project ID. | |
sambastudio_endpoint_id (str): Optional SambaStudio endpoint ID. | |
sambastudio_api_token (str): Optional SambaStudio endpoint API key. | |
sambanova_url (str): Optional SambaNova Cloud URL", | |
sambanova_api_key (str): Optional SambaNovaCloud API key. | |
Returns: | |
langchain llm model | |
""" | |
if type == 'sambastudio': | |
envs = { | |
'sambastudio_base_url': sambastudio_base_url, | |
'sambastudio_base_uri': sambastudio_base_uri, | |
'sambastudio_project_id': sambastudio_project_id, | |
'sambastudio_endpoint_id': sambastudio_endpoint_id, | |
'sambastudio_api_key': sambastudio_api_key, | |
} | |
envs = {k: v for k, v in envs.items() if v is not None} | |
if coe: | |
model_kwargs = { | |
'do_sample': do_sample, | |
'max_tokens_to_generate': max_tokens_to_generate, | |
'temperature': temperature, | |
'select_expert': select_expert, | |
'top_p': top_p, | |
'top_k': top_k, | |
'repetition_penalty': repetition_penalty, | |
'stop_sequences': stop_sequences, | |
'process_prompt': process_prompt, | |
} | |
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} | |
llm = SambaStudio( | |
**envs, | |
streaming=streaming, | |
model_kwargs=model_kwargs, | |
) | |
else: | |
model_kwargs = { | |
'do_sample': do_sample, | |
'max_tokens_to_generate': max_tokens_to_generate, | |
'temperature': temperature, | |
'top_p': top_p, | |
'top_k': top_k, | |
'repetition_penalty': repetition_penalty, | |
'stop_sequences': stop_sequences, | |
} | |
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} | |
llm = SambaStudio( | |
**envs, | |
streaming=streaming, | |
model_kwargs=model_kwargs, | |
) | |
elif type == 'sncloud': | |
envs = { | |
'sambanova_url': sambanova_url, | |
'sambanova_api_key': sambanova_api_key, | |
} | |
envs = {k: v for k, v in envs.items() if v is not None} | |
llm = SambaNovaCloud( | |
**envs, | |
max_tokens=max_tokens_to_generate, | |
model=select_expert, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
else: | |
raise ValueError(f"Invalid LLM API: {type}, only 'sncloud' and 'sambastudio' are supported.") | |
return llm | |
def load_chat( | |
model: str, | |
streaming: bool = False, | |
max_tokens: int = 1024, | |
temperature: Optional[float] = 0.0, | |
top_p: Optional[float] = None, | |
top_k: Optional[int] = None, | |
stream_options: Optional[Dict[str, bool]] = {"include_usage": True}, | |
sambanova_url: Optional[str] = None, | |
sambanova_api_key: Optional[str] = None, | |
) -> BaseChatModel: | |
""" | |
Loads a langchain SambanovaCloud chat model given some parameters | |
Args: | |
model (str): The name of the model to use, e.g., llama3-8b. | |
streaming (bool): whether to use streaming method. Defaults to False. | |
max_tokens (int) : Optional max number of tokens to generate. | |
temperature (float) : Optional model temperature. | |
top_p (float) : Optional model top_p. | |
top_k (int) : Optional model top_k. | |
stream_options (dict) : stream options, include usage to get generation metrics | |
sambanova_url (str): Optional SambaNova Cloud URL", | |
sambanova_api_key (str): Optional SambaNovaCloud API key. | |
Returns: | |
langchain BaseChatModel | |
""" | |
envs = { | |
'sambanova_url': sambanova_url, | |
'sambanova_api_key': sambanova_api_key, | |
} | |
envs = {k: v for k, v in envs.items() if v is not None} | |
model = ChatSambaNovaCloud( | |
**envs, | |
model= model, | |
streaming=streaming, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
stream_options=stream_options | |
) | |
return model |