Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,18 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
|
9 |
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
-
MODEL_ID = "
|
12 |
-
MODEL_ID2 = "
|
13 |
MODELS = os.environ.get("MODELS")
|
14 |
MODEL_NAME = MODELS.split("/")[-1]
|
15 |
|
16 |
-
TITLE = "<h1><center>
|
17 |
|
18 |
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></center></h3>'
|
19 |
|
@@ -26,37 +26,14 @@ CSS = """
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
#QUANTIZE
|
31 |
-
QUANTIZE_4BIT = True
|
32 |
-
USE_GRAD_CHECKPOINTING = True
|
33 |
-
TRAIN_BATCH_SIZE = 2
|
34 |
-
TRAIN_MAX_SEQ_LENGTH = 512
|
35 |
-
USE_FLASH_ATTENTION = False
|
36 |
-
GRAD_ACC_STEPS = 16
|
37 |
-
|
38 |
-
quantization_config = None
|
39 |
-
|
40 |
-
if QUANTIZE_4BIT:
|
41 |
-
quantization_config = BitsAndBytesConfig(
|
42 |
-
load_in_4bit=True,
|
43 |
-
bnb_4bit_quant_type="nf4",
|
44 |
-
bnb_4bit_use_double_quant=True,
|
45 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
46 |
-
)
|
47 |
-
|
48 |
-
attn_implementation = None
|
49 |
-
if USE_FLASH_ATTENTION:
|
50 |
-
attn_implementation="flash_attention_2"
|
51 |
-
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained(MODELS)
|
60 |
|
61 |
@spaces.GPU
|
62 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
|
@@ -69,7 +46,7 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
69 |
|
70 |
print(f"Conversation is -\n{conversation}")
|
71 |
|
72 |
-
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
73 |
|
74 |
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
75 |
|
@@ -79,6 +56,8 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
79 |
max_new_tokens=max_new_tokens,
|
80 |
do_sample=True,
|
81 |
temperature=temperature,
|
|
|
|
|
82 |
)
|
83 |
|
84 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
|
9 |
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
+
MODEL_ID = "THUDM/glm-4-9b-chat"
|
12 |
+
MODEL_ID2 = "THUDM/glm-4-9b-chat-1m"
|
13 |
MODELS = os.environ.get("MODELS")
|
14 |
MODEL_NAME = MODELS.split("/")[-1]
|
15 |
|
16 |
+
TITLE = "<h1><center>GLM-4-9B</center></h1>"
|
17 |
|
18 |
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></center></h3>'
|
19 |
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
MODELS,
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
low_cpu_mem_usage=True,
|
33 |
+
trust_remote_code=True,
|
34 |
+
).to(0).eval()
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODELS,trust_remote_code=True)
|
37 |
|
38 |
@spaces.GPU
|
39 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
|
|
|
46 |
|
47 |
print(f"Conversation is -\n{conversation}")
|
48 |
|
49 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
|
50 |
|
51 |
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
52 |
|
|
|
56 |
max_new_tokens=max_new_tokens,
|
57 |
do_sample=True,
|
58 |
temperature=temperature,
|
59 |
+
repetition_penalty=1.2,
|
60 |
+
eos_token_id=model.config.eos_token_id,
|
61 |
)
|
62 |
|
63 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|