File size: 19,222 Bytes
98d9c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import streamlit as st
from streamlit_chat import message as st_message
from streamlit_option_menu import option_menu
import os
import plotly.express as px
from io import StringIO
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from langchain.chat_models import AzureChatOpenAI, ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
import warnings
import time
from sqlalchemy import create_engine, Column, Integer, String, Text, Table, MetaData
from sqlalchemy.orm import sessionmaker
import matplotlib.pyplot as plt
from langchain_groq import ChatGroq
import pandas as pd
import numpy as np
from dotenv import load_dotenv
import re

warnings.filterwarnings("ignore", category=DeprecationWarning)

load_dotenv()

os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
llm = ChatGroq(model="llama-3.1-70b-versatile")


# Streamlit page configuration
st.set_page_config(
    page_title="TraffiTrack", 
    page_icon="", 
    layout="wide", 
    initial_sidebar_state="expanded", 
)

# Initialize session state for messages and banned users
if 'messages' not in st.session_state:
    st.session_state.messages = [{"message": "Hi! How can I assist you today?", "is_user": False}]
if 'banned_users' not in st.session_state:
    st.session_state.banned_users = []
if 'flowmessages' not in st.session_state:
    st.session_state.flowmessages = []


# Function to handle registration
def registration():
    st.title("User Registration")

    # Ensure session state is initialized
    if "user_data" not in st.session_state:
        st.session_state.user_data = []

    name = st.text_input("Enter your name")
    phone_number = st.text_input("Enter your phone number")

    if st.button("Register"):
        if name and phone_number:
            # Append user data to session state as a dictionary
            st.session_state.user_data.append({"name": name, "phone_number": phone_number})
            st.success("Registration successful!")
        else:
            st.warning("Please fill in all fields.")


# Function to simulate drug tracking data
def generate_sample_data():
    data = {
        "Drug Name": ["MDMA", "LSD", "Mephedrone", "Cocaine", "Heroin"],
        "Detected Instances": [10, 15, 7, 12, 5],
        "Flagged Users": [5, 10, 4, 7, 3],
        "IP Addresses": [3, 8, 2, 6, 2]
    }
    return pd.DataFrame(data)

# Function to check for drug-related content and extract info
def check_for_drug_content(input_text):
    drug_keywords = ["MDMA", "LSD", "Mephedrone", "Cocaine", "Heroin"]
    pattern = r'(\+?\d{1,3}[-. ]?)?\(?\d{1,4}?\)?[-. ]?\d{1,4}[-. ]?\d{1,4}[-. ]?\d{1,9}'  # Regex for phone numbers
    ip_pattern = r'(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)'  # Regex for IP addresses

    found_drugs = [keyword for keyword in drug_keywords if keyword.lower() in input_text.lower()]
    phone_numbers = re.findall(pattern, input_text)
    ip_addresses = re.findall(ip_pattern, input_text)

    return found_drugs, phone_numbers, ip_addresses

# Sidebar with options
selected = option_menu(
    "Main Menu", 
    ["Home", "Registration","Chat"], 
    icons=['house', 'person','chat-dots'], 
    menu_icon="cast", 
    default_index=0, 
    orientation="horizontal",
    styles={
        "container": {"padding": "5px", "background-color": "#DEF9C4"},
        "icon": {"color": "#468585", "font-size": "25px"},
        "nav-link": {
            "font-size": "16px", 
            "text-align": "left", 
            "margin": "0px", 
            "--hover-color": "#9CDBA6"
        },
        "nav-link-selected": {"background-color": "#50B498"},
    }
)


# Function to get a response from the chat model
def get_chatmodel_response(user_message):
    # Ensure user_message is a string
    if "user_data" in st.session_state and st.session_state.user_data:
        user_info = st.session_state.user_data[-1]  # Get the most recent registered user
        name = user_info.get("name", "Unknown")
        phone_number = user_info.get("phone_number", "Unknown")
    else:
        name = "Unknown"
        phone_number = "Unknown"

#better the prompt more formatting
#chat types -> human message
#response -> no drug message detected
#from registration
#remove debugging

    PROMPT_TEMPLATE = """
    You are an expert assistant specializing in detecting drug-related messages for monitoring illegal drug activities. Your role is to analyze user messages carefully to identify mentions of illegal substances or any activity related to drug trafficking, sales, or use. Your task is not just to detect specific drug names but to understand the context of the conversation, even if indirect or slang terms are used.

    Key substances and related slang to focus on:
    - MDMA (Molly, Mandy)
    - LSD (Acid, Tabs)
    - Mephedrone (Meow Meow)
    - Cocaine (Coke, Snow, Blow, White, Charlie)
    - Heroin (Smack, H, Brown)
    - Marijuana (Weed, Pot, Mary Jane, Ganja, Bud)
    - Ecstasy (X, XTC, E)
    - Crack (Rock, Freebase)

    Common phrases to consider:
    - “Looking for Molly” (MDMA reference)
    - “I need some snow” (Cocaine reference)
    - “Got any tabs?” (LSD reference)
    - “Can you hook me up with some blow?” (Cocaine reference)
    - “I don’t want to mess with Charlie” (Cocaine reference in a negative context)

    Instructions:
    1. If you detect any mention of the above substances, slang, or any activities related to drug sales, trafficking, or use, respond with a simple confirmation of detection, including the drug name or slang term detected.
    2. Be aware of **negations** or sentences where the user may **refuse** the drugs (e.g., "I don’t want cocaine"). Do not flag these as positive detections.
    3. **Do not** include the original user message in your response.
    4. Ensure the format includes the following fields: sender's name, phone number, and the detected drug word/slang. However, if there is **no drug-related content**, respond with only the message "drug word detected: none."

    Below is the required format for your response:

    If a drug word is detected:
            {name}
            {phone_number}
            drug word detected: {{drug_word_detected}}

    If no drug word is detected:
            drug word detected: none

    Below is the user message

    User message: {user_message}

    Response: """



    memory = ConversationBufferWindowMemory(k=5, return_messages=True)
    user_message = str(user_message)

    # Use the parameter user_message to format the prompt
    formatted_prompt = PROMPT_TEMPLATE.format(
        user_message=user_message,
        name=name,
        phone_number=phone_number
    )
    # Add the formatted prompt to the conversation history
    st.session_state.flowmessages.append(HumanMessage(content=user_message))

    # Generate a response from the model
    response = llm([SystemMessage(content=formatted_prompt)])

    # Ensure the response.content is a string
    response_content = str(response.content)

    # Add the AI response to the conversation history
    st.session_state.flowmessages.append(AIMessage(content=response_content))


    # Save the conversation context
    memory.save_context({"input": user_message}, {"output": response_content})

    return response_content


    
    # User input for query
    
    # Button to send the message
    # if st.button("Send"):
    #     if user_input:
    #         response = get_chatmodel_response(user_input)
    #         st.session_state.messages.append({"message": response, "is_user": False})
    #         st.experimental_rerun()
    #     else:
    #         st.warning("Please enter a message.")
    
    # Display the conversation history
    if "flowmessages" in st.session_state:
        st.subheader("Chat")
        for message in st.session_state.flowmessages:
            if isinstance(message, HumanMessage):
                st_message(message.content, is_user=True)
            elif isinstance(message, AIMessage):
                st_message(message.content, is_user=False)

def display_home_info():
    # Set background color
    st.markdown(
        """
        <style>
        .reportview-container {
            background: #DEF9C4;
        }
        </style>
        """,
        unsafe_allow_html=True
    )
    
    # Title with emoji
    st.title("🏠 Welcome to the Drug-Related Content Detector")

    # Section for description
    st.markdown(
        """
        <div style='background-color: #50B498; padding: 10px; border-radius: 5px;'>
            <h3 style='color: white;'>Our software solution helps identify drug-related content across multiple platforms.</h3>
        </div>
        """,
        unsafe_allow_html=True
    )

    # Features list
    st.write("### Features include:")
    st.markdown(
        """
        <ul style='list-style-type: none;'>
            <li>🌐 Real-time monitoring of messages.</li>
            <li>🖼️ Detection of images and text related to drug trafficking.</li>
            <li>📊 Comprehensive statistics and insights.</li>
        </ul>
        """,
        unsafe_allow_html=True
    )

if selected == "Registration":
    registration()

elif selected == "Home":
    display_home_info()

elif selected == "Chat":
    
    def traffitrack_chatbot():
        st.title('TraffiTrack 💬')

        # Dropdown to select platform
        platform = st.selectbox(
            "Choose a platform", 
            ["Live 💁‍♀️", "WhatsApp 📱", "Instagram 📸", "Telegram ✉️"], 
            index=0
        )

        if platform == "Telegram ✉️":
            # Hardcoded CSV content
            csv_content = """sender_name,sender_id,phone_number,message_text
    Shruti,1580593004,917304814120,But I would prefer blowing a bag of Charlie
    Shruti,1580593004,917304814120,I want to eat ice cream i am bored
    Shruti,1580593004,917304814120,He’s heavily into smack
    Shruti,1580593004,917304814120,There was a bag of snow in the car
    Shruti,1580593004,917304814120,Did you bring the Mary Jane for the party tonight?
    Shruti,1580593004,917304814120,Mary Jane
    Ritika,1065437474,918828000465,I WANT A BAG OF CHARLIE
    Ritika,1065437474,918828000465,Okayy
    Preeyaj,6649015430,,Haa bhej cocain thoda
    Ritika,1065437474,918828000465,Maal chahiye?
    Preeyaj,6649015430,,Llm
    Ritika,1065437474,918828000465,Kya kar rahe ho?
    Ritika,1065437474,918828000465,Hey"""

            # Read the CSV content into a DataFrame
            messages_df = pd.read_csv(StringIO(csv_content))
            # Reverse the DataFrame to display messages from first to last
            for idx, row in messages_df[::-1].iterrows():  # Reverse the DataFrame here
                sender_name = row['sender_name']
                message_text = row['message_text']
                # Display each message with its corresponding sender name
                st_message(f"{sender_name}: {message_text}", is_user=False, key=f"telegram_message_{idx}")

            if st.button("Analyze 🚨"):
                # Initialize count and list for drug-related messages
                drug_count = 0  # Initialize drug_count here
                drug_messages = []
                user_data = {}  # Initialize user data dictionary

                # Analyze each message for drug-related content
                for idx, row in messages_df.iterrows():
                    message_text = row['message_text']
                    sender_name = row['sender_name']
                    sender_id = row['sender_id']
                    phone_number = row['phone_number']

                    # Get response from the chat model
                    response_content = get_chatmodel_response(message_text)

                    # Check for drug word detected in the response
                    if "drug word detected" in response_content and "none" not in response_content:
                        drug_word = response_content.split("drug word detected: ")[1].strip()
                        drug_count += 1
                        drug_messages.append({
                            "sender_name": sender_name,
                            "sender_id": sender_id,
                            "phone_number": phone_number,
                            "message_text": message_text,
                            "drug_word": drug_word
                        })
                        # Aggregate data by user
                        if sender_name not in user_data:
                            user_data[sender_name] = {
                                "phone_number": phone_number,
                                "message_count": 0,
                                "drug_words": []
                            }
                        user_data[sender_name]["message_count"] += 1
                        user_data[sender_name]["drug_words"].append(drug_word)

                # Display statistics
                st.subheader("Analysis Results 📊")
                st.write(f"Total drug-related messages detected: {drug_count}")

                if drug_count > 0:
                    # st.write("Details of detected messages:")
                    # for message in drug_messages:
                    #     st.markdown(f"**Phone Number**: {message['phone_number']}  \
                    #                 **Sender ID**: {message['sender_id']}  \
                    #                 **Message**: {message['message_text']}  \
                    #                 **Drug Detected**: {message['drug_word']}")
                    
                    # Prepare data for visualization
                    user_names = list(user_data.keys())
                    message_counts = [data["message_count"] for data in user_data.values()]
                    phone_numbers = [data["phone_number"] for data in user_data.values()]

                    # 1. Bar chart: Messages per user
                    st.markdown("### Number of Messages per User 📊")
                    fig = px.bar(
                        x=user_names, 
                        y=message_counts, 
                        labels={'x': 'User Name', 'y': 'Message Count'}, 
                        title="Messages Detected per User"
                    )
                    st.plotly_chart(fig)

                    # 2. Pie chart: Distribution of drug-related messages
                    st.markdown("### Drug Distribution Among Users 🍰")
                    drugs_detected = [drug for user in user_data.values() for drug in user["drug_words"]]
                    fig = px.pie(
                        names=drugs_detected, 
                        title="Distribution of Detected Drugs"
                    )
                    st.plotly_chart(fig)

                    # 3. Horizontal bar chart: Number of drug-related messages per user
                    st.markdown("### Drug-related Messages per User 📊")
                    fig = px.bar(
                        y=user_names, 
                        x=message_counts, 
                        orientation='h', 
                        labels={'y': 'User Name', 'x': 'Drug-related Messages Count'}, 
                        title="Drug-related Messages per User"
                    )
                    st.plotly_chart(fig)

                    # 4. Display user details in a table
                    st.markdown("### User Details Table 📋")
                    user_df = pd.DataFrame({
                        "User Name": user_names,
                        "Phone Number": phone_numbers,
                        "Message_id" : sender_id,
                        "Messages Detected": message_counts
                    })
                    st.dataframe(user_df)

                    # Optionally: Link to the statistics page
                    st.markdown("[View Statistics Page](#)")
                else:
                    st.write("No drug-related messages detected.")

        else:
            # Display chat messages for other platforms with unique keys
            for idx, msg in enumerate(st.session_state.messages):
                st_message(msg["message"], is_user=msg["is_user"], key=f"message_{idx}")

            # Input for user query
            input_text = st.text_input("Enter your text", key="user_input")

            if st.button("Send"):
                if input_text:
                    # Append the user's message to session state
                    st.session_state.messages.append({"message": input_text, "is_user": True})

                    # Get the response from the model
                    response = get_chatmodel_response(input_text)

                    # Append the response from the model
                    st.session_state.messages.append({"message": response, "is_user": False})

                    # Rerun to refresh the UI with new messages
                    st.experimental_rerun()
                else:
                    st.warning("Please enter a message.")

    # Call the chatbot function
    traffitrack_chatbot()


# elif selected == "Statistics":
#     st.title('Drug Trafficking Statistics 📊')

#     # Generate sample data
#     data = generate_sample_data()

#     # Display data
#     st.subheader("Overview of Detected Drugs")
#     st.dataframe(data)

#     # Plotting the data
#     st.subheader("Detected Instances of Drugs")
#     fig, ax = plt.subplots(figsize=(8, 5))
#     ax.bar(data["Drug Name"], data["Detected Instances"], color="#50B498")
#     plt.title("Detected Instances of Drugs")
#     plt.xlabel("Drug Name")
#     plt.ylabel("Detected Instances")
#     st.pyplot(fig)

#     # Plotting flagged users
#     st.subheader("Flagged Users")
#     fig, ax = plt.subplots(figsize=(8, 5))
#     ax.bar(data["Drug Name"], data["Flagged Users"], color="#468585")
#     plt.title("Flagged Users")
#     plt.xlabel("Drug Name")
#     plt.ylabel("Flagged Users")
#     st.pyplot(fig)

#     # Plotting IP addresses
#     st.subheader("Detected IP Addresses")
#     fig, ax = plt.subplots(figsize=(8, 5))
#     ax.bar(data["Drug Name"], data["IP Addresses"], color="#9CDBA6")
#     plt.title("Detected IP Addresses")
#     plt.xlabel("Drug Name")
#     plt.ylabel("Detected IP Addresses")
#     st.pyplot(fig)

# Custom CSS for a better user interface
st.markdown(f"""
    <style>
    .stApp {{
        background-color: #DEF9C4;
        color: #468585;
    }}
    .stButton>button {{
        background-color: #50B498; 
        color: #ffffff; 
        border: none;
        border-radius: 8px;
        font-size: 16px;
        padding: 10px 20px;
        cursor: pointer;
    }}
    .stButton>button:hover {{
        background-color: #9CDBA6;
    }}
    .stTextInput>input {{
        background-color: #468585; 
        color: #ffffff;
        border: 2px solid #50B498;
        border-radius: 8px;
        padding: 10px;
        font-size: 16px;
    }}
    h1, h2, h3 {{
        color: #50B498;
    }}
    .stDataFrame {{
        background-color: #ffffff;
        color: #000000;
        border-radius: 10px;
        padding: 10px;
    }}
    </style>
""", unsafe_allow_html=True)