Spaces:
Sleeping
Sleeping
File size: 1,303 Bytes
6f70afa 3cab00b 6f70afa db94086 6f70afa 3cab00b 6f70afa db94086 6f70afa 3cab00b 6f70afa 3cab00b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image
from huggingface_hub import hf_hub_download
import io as IO
import base64
def example_inference(im_path, transprent_bg=False):
net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
net.to(device)
net.eval()
# prepare input
model_input_size = [1024,1024]
orig_im = io.imread(im_path, plugin='imageio')
orig_im_size = orig_im.shape[0:2]
image = preprocess_image(orig_im, model_input_size).to(device)
# inference
result=net(image)
# post process
result_image = postprocess_image(result[0][0], orig_im_size)
bgColor = (0,0,0, 0) if transprent_bg else (255, 255, 255, 255)
# save result
pil_im = Image.fromarray(result_image)
no_bg_image = Image.new("RGBA", pil_im.size, bgColor)
orig_image = Image.open(IO.BytesIO(im_path))
no_bg_image.paste(orig_image, mask=pil_im)
# Convert image to bytes and then to base64
buffered = IO.BytesIO()
no_bg_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str |