File size: 1,303 Bytes
6f70afa
 
 
 
 
 
3cab00b
 
6f70afa
db94086
6f70afa
 
 
 
 
 
 
 
 
3cab00b
6f70afa
 
 
 
 
 
 
 
db94086
6f70afa
 
 
3cab00b
6f70afa
3cab00b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image
from huggingface_hub import hf_hub_download
import io as IO
import base64

def example_inference(im_path, transprent_bg=False):

    net = BriaRMBG()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
    net.to(device)
    net.eval()    

    # prepare input
    model_input_size = [1024,1024]
    orig_im = io.imread(im_path, plugin='imageio')
    orig_im_size = orig_im.shape[0:2]
    image = preprocess_image(orig_im, model_input_size).to(device)

    # inference 
    result=net(image)

    # post process
    result_image = postprocess_image(result[0][0], orig_im_size)
    bgColor = (0,0,0, 0) if transprent_bg else (255, 255, 255, 255)
    # save result
    pil_im = Image.fromarray(result_image)
    no_bg_image = Image.new("RGBA", pil_im.size, bgColor)
    orig_image = Image.open(IO.BytesIO(im_path))
    no_bg_image.paste(orig_image, mask=pil_im)
    
    # Convert image to bytes and then to base64
    buffered = IO.BytesIO()
    no_bg_image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    
    return img_str