import gradio as gr from annotations import analyze_pdf import io def process_pdf(file): MAX_SIZE = 10 * 1024 * 1024 # 10MB if file is None: return "❌ No file uploaded.", None if len(file) > MAX_SIZE: return "❌ File size exceeds the 10MB limit.", None try: # Wrap the binary data in BytesIO to make it file-like file_like = io.BytesIO(file) # Analyze the PDF issues, annotated_pdf = analyze_pdf(file_like) if "error" in issues: return f"❌ Error: {issues['error']}", None # Prepare issues for display if issues['total_issues'] == 0: issues_display = "✅ No language issues found. Great job!" else: issues_display = f"**Total Issues Found:** {issues['total_issues']}\n\n" for idx, issue in enumerate(issues['issues'], start=1): issues_display += f"**Issue {idx}:**\n" issues_display += f"- **Message:** {issue['message']}\n" issues_display += f"- **Context:** {issue['context']}\n" issues_display += f"- **Suggestions:** {', '.join(issue['suggestions']) if issue['suggestions'] else 'None'}\n" issues_display += f"- **Category:** {issue['category']}\n" issues_display += f"- **Rule ID:** {issue['rule_id']}\n" issues_display += f"- **Offset:** {issue['offset']}\n" issues_display += f"- **Length:** {issue['length']}\n\n" # Prepare annotated PDF for download if annotated_pdf: # Return a dictionary with 'name' and 'data' keys annotated_pdf_dict = { "name": "annotated_document.pdf", "data": annotated_pdf } return issues_display, annotated_pdf_dict else: return issues_display, None except language_tool_python.LanguageToolError as e: return f"❌ LanguageTool Error: {str(e)}", None except Exception as e: return f"❌ An unexpected error occurred: {str(e)}", None with gr.Blocks() as demo: gr.Markdown("# 📄 PDF Language Issue Analyzer") gr.Markdown("Upload a PDF to analyze language issues and receive an annotated PDF.") with gr.Row(): with gr.Column(): pdf_input = gr.File(label="📂 Upload PDF", type="binary") analyze_button = gr.Button("🔍 Analyze PDF") with gr.Column(): issues_output = gr.Markdown(label="📝 Language Issues") annotated_pdf_output = gr.File(label="💾 Download Annotated PDF") analyze_button.click( fn=process_pdf, inputs=pdf_input, outputs=[issues_output, annotated_pdf_output] ) gr.Markdown(""" --- **Note:** The annotated PDF highlights the detected language issues. Click the download link to view the annotated document. """) demo.launch()