chatGPT / app.py
sanchit-gandhi's picture
Create app.py
c39fa45
raw
history blame
8.56 kB
import torch
import gradio as gr
from transformers import pipeline
from pyChatGPT import ChatGPT
from speechbrain.pretrained import Tacotron2
from speechbrain.pretrained import HIFIGAN
import json
import soundfile as sf
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-tiny.en",
chunk_length_s=30,
device=device,
)
session_token = os.environ.get("SessionToken")
# Intialize TTS (tacotron2) and Vocoder (HiFIGAN)
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts", overrides={"max_decoder_steps": 2000}, run_opts={"device":device})
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
def get_response_from_chatbot(text, reset_conversation):
try:
if reset_conversation:
api.refresh_auth()
api.reset_conversation()
resp = api.send_message(text)
response = resp["message"]
except:
response = "Sorry, the chatGPT queue is full. Please try again later."
return response
def chat(input_audio, chat_history, reset_conversation):
# speech -> text (Whisper)
message = pipe(input_audio)["text"]
# text -> response (chatGPT)
response = get_response_from_chatbot(message, reset_conversation)
# response -> speech (Tacotron 2)
mel_output, mel_length, alignment = tacotron2.encode_text(response)
wav = hifi_gan.decode_batch(mel_output)
sf.write("out.wav", wav.squeeze().cpu().numpy(), 22050)
out_chat = []
chat_history = chat_history if not reset_conversation else ""
if chat_history != "":
out_chat = json.loads(chat_history)
out_chat.append((message, response))
chat_history = json.dumps(out_chat)
return out_chat, chat_history, "out.wav"
start_work= """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['div_count'] = 0;
window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];
chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0];
prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0];
window['chat_bot1'].children[1].textContent = '';
clientHeight = getClientHeight();
new_height = (clientHeight-300) + 'px';
chat_row.style.height = new_height;
window['chat_bot'].style.height = new_height;
window['chat_bot'].children[2].style.height = new_height;
window['chat_bot1'].style.height = new_height;
window['chat_bot1'].children[2].style.height = new_height;
prompt_row.children[0].style.flex = 'auto';
prompt_row.children[0].style.width = '100%';
window['checkChange'] = function checkChange() {
try {
if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
for (var i = 0; i < new_len; i++) {
new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
window['chat_bot1'].children[2].children[0].appendChild(new_div);
}
window['div_count'] = chat_bot.children[2].children[0].children.length;
}
if (window['chat_bot'].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
} catch(e) {
}
}
window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);
}
return false;
}"""
with gr.Blocks(title="Talk to chatGPT") as demo:
gr.Markdown("## Talk to chatGPT ##")
gr.HTML("<p>You can duplicate this space and use your own session token: <a style='display:inline-block' href='https://huggingface.co/spaces/yizhangliu/chatGPT?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=10' alt='Duplicate Space'></a></p>")
gr.HTML("<p> Instruction on how to get session token can be seen in video <a style='display:inline-block' href='https://www.youtube.com/watch?v=TdNSj_qgdFk'><font style='color:blue;weight:bold;'>here</font></a>. Add your session token by going to settings and add under secrets. </p>")
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("Let's talk to chatGPT! πŸ—£", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row():
prompt_input_audio = gr.Audio(
source="microphone",
type="filepath",
label="Record Audio Input",
)
prompt_output_audio = gr.Audio()
reset_conversation = gr.Checkbox(label="Reset conversation?", value=False)
with gr.Row(elem_id="prompt_row"):
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
submit_btn = gr.Button(value="Send to chatGPT", elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100,
)
submit_btn.click(fn=chat,
inputs=[prompt_input_audio, chat_history, reset_conversation],
outputs=[chatbot, chat_history, prompt_output_audio],
)
demo.launch(debug=True)