chatGPT / app.py
sanchit-gandhi's picture
Update app.py
0416a1f
import torch
import os
import gradio as gr
from transformers import pipeline
from pyChatGPT import ChatGPT
from speechbrain.pretrained import Tacotron2
from speechbrain.pretrained import HIFIGAN
import json
import soundfile as sf
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Intialise STT (Whisper)
pipe = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-base.en",
chunk_length_s=30,
device=device,
)
# Initialise ChatGPT session
session_token = os.environ.get("SessionToken")
api = ChatGPT(session_token=session_token)
# Intialise TTS (tacotron2) and Vocoder (HiFIGAN)
tacotron2 = Tacotron2.from_hparams(
source="speechbrain/tts-tacotron2-ljspeech",
savedir="tmpdir_tts",
overrides={"max_decoder_steps": 10000},
run_opts={"device": device},
)
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
def get_response_from_chatbot(text, reset_conversation):
try:
if reset_conversation:
api.refresh_auth()
api.reset_conversation()
resp = api.send_message(text)
response = resp["message"]
except:
response = "Sorry, the chatGPT queue is full. Please try again later."
return response
def chat(input_audio, chat_history, reset_conversation):
# speech -> text (Whisper)
message = pipe(input_audio)["text"]
# text -> response (chatGPT)
response = get_response_from_chatbot(message, reset_conversation)
# response -> speech (tacotron2)
mel_output, mel_length, alignment = tacotron2.encode_text(response)
wav = hifi_gan.decode_batch(mel_output)
sf.write("out.wav", wav.squeeze().cpu().numpy(), 22050)
out_chat = []
chat_history = chat_history if not reset_conversation else ""
if chat_history != "":
out_chat = json.loads(chat_history)
out_chat.append((message, response))
chat_history = json.dumps(out_chat)
return out_chat, chat_history, "out.wav"
start_work = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['div_count'] = 0;
window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];
chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0];
prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0];
window['chat_bot1'].children[1].textContent = '';
clientHeight = getClientHeight();
new_height = (clientHeight-300) + 'px';
chat_row.style.height = new_height;
window['chat_bot'].style.height = new_height;
window['chat_bot'].children[2].style.height = new_height;
window['chat_bot1'].style.height = new_height;
window['chat_bot1'].children[2].style.height = new_height;
prompt_row.children[0].style.flex = 'auto';
prompt_row.children[0].style.width = '100%';
window['checkChange'] = function checkChange() {
try {
if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
for (var i = 0; i < new_len; i++) {
new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
window['chat_bot1'].children[2].children[0].appendChild(new_div);
}
window['div_count'] = chat_bot.children[2].children[0].children.length;
}
if (window['chat_bot'].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
} catch(e) {
}
}
window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);
}
return false;
}"""
with gr.Blocks(title="Talk to chatGPT") as demo:
gr.Markdown("## Talk to chatGPT ##")
gr.HTML(
"<p> Demo uses <a href='https://huggingface.co/openai/whisper-base.en' class='underline'>Whisper</a> to convert the input speech"
" to transcribed text, <a href='https://chat.openai.com/chat' class='underline'>chatGPT</a> to generate responses, and <a"
" href='https://huggingface.co/speechbrain/tts-tacotron2-ljspeech' class='underline'>tacotron2</a> to convert the response to"
" output speech: </p>"
)
gr.HTML("<p> <center><img src='https://raw.githubusercontent.com/sanchit-gandhi/codesnippets/main/pipeline.png' width='870'></center> </p>")
gr.HTML(
"<p>You can duplicate this space and use your own session token: <a style='display:inline-block'"
" href='https://huggingface.co/spaces/sanchit-gandhi/chatGPT?duplicate=true'><img"
" src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=10'"
" alt='Duplicate Space'></a></p>"
)
gr.HTML(
"<p> Instructions on how to obtain your session token can be found in the video <a style='display:inline-block'"
" href='https://youtu.be/TdNSj_qgdFk?t=175'><font style='color:blue;weight:bold;'>here</font></a>."
" Add your session token by going to <i>Settings</i> -> <i>New secret</i> and add the token under the name <i>SessionToken</i>. </p>"
)
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("Let's talk to chatGPT! 🗣", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row():
prompt_input_audio = gr.Audio(
source="microphone",
type="filepath",
label="Record Audio Input",
)
prompt_output_audio = gr.Audio()
reset_conversation = gr.Checkbox(label="Reset conversation?", value=False)
with gr.Row(elem_id="prompt_row"):
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
submit_btn = gr.Button(value="Send to chatGPT", elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100,
)
submit_btn.click(
fn=chat,
inputs=[prompt_input_audio, chat_history, reset_conversation],
outputs=[chatbot, chat_history, prompt_output_audio],
)
demo.launch(debug=True)