from transformers import MusicgenForConditionalGeneration, AutoProcessor, set_seed import torch import gradio as gr model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") processor = AutoProcessor.from_pretrained("facebook/musicgen-small") device = "cuda:0" model.to(device) sampling_rate = model.audio_encoder.config.sampling_rate text_encoder = model.get_text_encoder() def generate_audio(prompt, negative_prompt, guidance_scale=3, seed=0): inputs = processor( text=[prompt, negative_prompt], padding=True, return_tensors="pt", ).to(device) with torch.no_grad(): encoder_outputs = text_encoder(**inputs) set_seed(seed) audio_values = model.generate(inputs.input_ids[0][None, :], attention_mask=inputs.attention_mask, encoder_outputs=encoder_outputs, do_sample=True, guidance_scale=guidance_scale, max_new_tokens=1028) audio_values = (audio_values.cpu().numpy() * 32767).astype(np.int16) return (sampling_rate, audio_values) gr.Interface( fn=generate_audio, inputs=[ gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"), gr.Text(label="Negative prompt", value="drums"), gr.Slider(1.5, 10, value=3, step=0.5, label="Guidance scale"), gr.Slider(0, 10, value=0, step=1, label="Seed"), ], outputs=[ gr.Audio(label="Generated Music", type="numpy"), ], ).launch()