import torch import gradio as gr import yt_dlp as yt from transformers import pipeline #from transformers.pipelines.audio_utils import ffmpeg_read from typing import Tuple import tempfile import os from yt_dlp import YoutubeDL MODEL_NAME = "openai/whisper-large-v2" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", chunk_length_s=30, model=MODEL_NAME, device=device, ) def transcribe(microphone, file_upload, task): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): raise gr.InterfaceError("You have to either use the microphone or upload an audio file") file_size_mb = None if file_upload is not None: file_size_mb = os.stat(file_upload).st_size / (1024 * 1024) if file_size_mb > FILE_LIMIT_MB: raise gr.InterfaceError( f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." ) file_path = microphone if microphone is not None else file_upload with open(file_path, "rb") as f: inputs = f.read() text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"] return warn_output + text def download_yt_audio(yt_url, filename): ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with yt.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except yt.utils.ExtractorError as err: raise gr.InterfaceError(str(err)) def yt_transcribe(yt_url, task, max_filesize=75.0) -> Tuple[str, str]: with YoutubeDL({}) as ydl: info_dict = ydl.extract_info(yt_url, download=False) video_id = info_dict["id"] html_embed_str = f'
' with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs = f.read() #inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) #inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"] return html_embed_str, text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Large V2: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe") ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Whisper Large V2: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" " arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(enable_queue=True)