sander-wood's picture
Update app.py
953e79d
import subprocess
import os
import gradio as gr
import json
from utils import *
from unidecode import unidecode
from transformers import AutoTokenizer
description = """
<div>
<a style="display:inline-block" href='https://github.com/microsoft/muzic/tree/main/clamp'><img src='https://img.shields.io/github/stars/microsoft/muzic?style=social' /></a>
<a style='display:inline-block' href='https://ai-muzic.github.io/clamp/'><img src='https://img.shields.io/badge/website-CLaMP-ff69b4.svg' /></a>
<a style="display:inline-block" href="https://huggingface.co/datasets/sander-wood/wikimusictext"><img src="https://img.shields.io/badge/huggingface-dataset-ffcc66.svg"></a>
<a style="display:inline-block" href="https://arxiv.org/pdf/2304.11029.pdf"><img src="https://img.shields.io/badge/arXiv-2304.11029-b31b1b.svg"></a>
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/sander-wood/clamp_similar_music_recommendation?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg" alt="Duplicate Space"></a>
</div>
## ℹ️ How to use this demo?
1. Select a music file in MusicXML (.mxl) format.
2. Click "Submit" and wait for the result.
3. It will return the most similar music score from the WikiMusictext dataset (1010 scores in total).
## ❕Notice
- The demo only supports MusicXML (.mxl) files.
- The returned results include the title, artist, genre, description, and the score in ABC notation.
- The genre and description may not be accurate, as they are collected from the web.
- The demo is based on CLaMP-S/512, a CLaMP model with 6-layer Transformer text/music encoders and a sequence length of 512.
## 🎵👉🎵 Similar Music Recommendation
A surprising capability of CLaMP is that it can also recommend similar music given a piece of music, even though it is not trained on this task. This is because CLaMP is trained to encode the semantic meaning of music, and thus it can capture the similarity between music pieces.We only use the music encoder to extract the music feature from the music query, and then calculate the similarity between the query and all the pieces of music in the library.
"""
CLAMP_MODEL_NAME = 'sander-wood/clamp-small-512'
QUERY_MODAL = 'music'
KEY_MODAL = 'music'
TOP_N = 1
TEXT_MODEL_NAME = 'distilroberta-base'
TEXT_LENGTH = 128
device = torch.device("cpu")
# load CLaMP model
model = CLaMP.from_pretrained(CLAMP_MODEL_NAME)
music_length = model.config.max_length
model = model.to(device)
model.eval()
# initialize patchilizer, tokenizer, and softmax
patchilizer = MusicPatchilizer()
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
softmax = torch.nn.Softmax(dim=1)
def compute_values(Q_e, K_e, t=1):
"""
Compute the values for the attention matrix
Args:
Q_e (torch.Tensor): Query embeddings
K_e (torch.Tensor): Key embeddings
t (float): Temperature for the softmax
Returns:
values (torch.Tensor): Values for the attention matrix
"""
# Normalize the feature representations
Q_e = torch.nn.functional.normalize(Q_e, dim=1)
K_e = torch.nn.functional.normalize(K_e, dim=1)
# Scaled pairwise cosine similarities [1, n]
logits = torch.mm(Q_e, K_e.T) * torch.exp(torch.tensor(t))
values = softmax(logits)
return values.squeeze()
def encoding_data(data, modal):
"""
Encode the data into ids
Args:
data (list): List of strings
modal (str): "music" or "text"
Returns:
ids_list (list): List of ids
"""
ids_list = []
if modal=="music":
for item in data:
patches = patchilizer.encode(item, music_length=music_length, add_eos_patch=True)
ids_list.append(torch.tensor(patches).reshape(-1))
else:
for item in data:
text_encodings = tokenizer(item,
return_tensors='pt',
truncation=True,
max_length=TEXT_LENGTH)
ids_list.append(text_encodings['input_ids'].squeeze(0))
return ids_list
def abc_filter(lines):
"""
Filter out the metadata from the abc file
Args:
lines (list): List of lines in the abc file
Returns:
music (str): Music string
"""
music = ""
for line in lines:
if line[:2] in ['A:', 'B:', 'C:', 'D:', 'F:', 'G', 'H:', 'N:', 'O:', 'R:', 'r:', 'S:', 'T:', 'W:', 'w:', 'X:', 'Z:'] \
or line=='\n' \
or (line.startswith('%') and not line.startswith('%%score')):
continue
else:
if "%" in line and not line.startswith('%%score'):
line = "%".join(line.split('%')[:-1])
music += line[:-1] + '\n'
else:
music += line + '\n'
return music
def load_music(filename):
"""
Load the music from the xml file
Args:
file (Union[str, bytes, BinaryIO, TextIO]): Input file object containing the xml file
Returns:
music (str): Music string
"""
# Get absolute path of xml2abc.py
script_dir = os.path.dirname(os.path.abspath(__file__))
xml2abc_path = os.path.join(script_dir, 'xml2abc.py')
# Use absolute path in Popen()
p = subprocess.Popen(['python', xml2abc_path, '-m', '2', '-c', '6', '-x', filename], stdout=subprocess.PIPE)
result = p.communicate()[0]
output = result.decode('utf-8').replace('\r', '')
music = unidecode(output).split('\n')
music = abc_filter(music)
return music
def get_features(ids_list, modal):
"""
Get the features from the CLaMP model
Args:
ids_list (list): List of ids
modal (str): "music" or "text"
Returns:
features_list (torch.Tensor): Tensor of features with a shape of (batch_size, hidden_size)
"""
features_list = []
print("Extracting "+modal+" features...")
with torch.no_grad():
for ids in tqdm(ids_list):
ids = ids.unsqueeze(0)
if modal=="text":
masks = torch.tensor([1]*len(ids[0])).unsqueeze(0)
features = model.text_enc(ids.to(device), attention_mask=masks.to(device))['last_hidden_state']
features = model.avg_pooling(features, masks)
features = model.text_proj(features)
else:
masks = torch.tensor([1]*(int(len(ids[0])/PATCH_LENGTH))).unsqueeze(0)
features = model.music_enc(ids, masks)['last_hidden_state']
features = model.avg_pooling(features, masks)
features = model.music_proj(features)
features_list.append(features[0])
return torch.stack(features_list).to(device)
def similar_music_recommendation(file):
"""
Recommend similar music
Args:
file (Union[str, bytes, BinaryIO, TextIO]): Input file object containing the xml file
Returns:
output (str): Output string
"""
query = load_music(file.name)
print("\nQuery:\n"+ query)
with open(KEY_MODAL+"_key_cache_"+str(music_length)+".pth", 'rb') as f:
key_cache = torch.load(f)
# encode query
query_ids = encoding_data([query], QUERY_MODAL)
query_feature = get_features(query_ids, QUERY_MODAL)
key_filenames = key_cache["filenames"]
key_features = key_cache["features"]
# compute values
values = compute_values(query_feature, key_features)
idx = torch.argsort(values)[-1]
filename = key_filenames[idx].split('/')[-1][:-4]
with open("wikimusictext.json", 'r') as f:
wikimusictext = json.load(f)
for item in wikimusictext:
if item['title']==filename:
# output = "Title:\n" + item['title']+'\n\n'
# output += "Artist:\n" + item['artist']+ '\n\n'
# output += "Genre:\n" + item['genre']+ '\n\n'
# output += "Description:\n" + item['text']+ '\n\n'
# output += "ABC notation:\n" + item['music']+ '\n\n'
print("Title: " + item['title'])
print("Artist: " + item['artist'])
print("Genre: " + item['genre'])
print("Description: " + item['text'])
print("ABC notation:\n" + item['music'])
return item["title"], item["artist"], item["genre"], item["text"], item["music"]
input_file = gr.inputs.File(label="Upload MusicXML file")
output_title = gr.outputs.Textbox(label="Title")
output_artist = gr.outputs.Textbox(label="Artist")
output_genre = gr.outputs.Textbox(label="Genre")
output_description = gr.outputs.Textbox(label="Description")
output_abc = gr.outputs.Textbox(label="ABC notation")
gr.Interface(similar_music_recommendation,
inputs=input_file,
outputs=[output_title, output_artist, output_genre, output_description, output_abc],
title="🗜️ CLaMP: Similar Music Recommendation",
description=description).launch()