Spaces:
Sleeping
Sleeping
Sanzana Lora
commited on
Commit
•
39a2488
1
Parent(s):
41e4666
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load fine-tuned T5 models for different tasks
|
5 |
+
translation_model_en_bn = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_en_bn")
|
6 |
+
translation_tokenizer_en_bn = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_en_bn")
|
7 |
+
|
8 |
+
translation_model_bn_en = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_bn_en")
|
9 |
+
translation_tokenizer_bn_en = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_bn_en")
|
10 |
+
|
11 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
12 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
13 |
+
|
14 |
+
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_banglaparaphrase")
|
15 |
+
paraphrase_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_banglaparaphrase")
|
16 |
+
|
17 |
+
# Function to perform machine translation
|
18 |
+
def translate_text(input_text):
|
19 |
+
inputs = translation_tokenizer_en_bn("translate: " + input_text, return_tensors="pt")
|
20 |
+
outputs = translation_model_en_bn.generate(**inputs)
|
21 |
+
translated_text = translation_tokenizer_en_bn.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
return translated_text
|
23 |
+
|
24 |
+
# Function to perform summarization
|
25 |
+
def summarize_text(input_text):
|
26 |
+
inputs = summarization_tokenizer("summarize: " + input_text, return_tensors="pt")
|
27 |
+
outputs = summarization_model.generate(**inputs)
|
28 |
+
summarized_text = summarization_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
return summarized_text
|
30 |
+
|
31 |
+
# Function to perform paraphrasing
|
32 |
+
def paraphrase_text(input_text):
|
33 |
+
inputs = paraphrase_tokenizer("paraphrase: " + input_text, return_tensors="pt")
|
34 |
+
outputs = paraphrase_model.generate(**inputs)
|
35 |
+
paraphrased_text = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return paraphrased_text
|
37 |
+
|
38 |
+
# Gradio Interface
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=translate_text, # Placeholder function; will be updated dynamically based on task selection
|
41 |
+
inputs=gr.Textbox("textarea", label="Input Text"),
|
42 |
+
outputs=gr.Textbox("auto", label="Output Text"),
|
43 |
+
live=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Function to update the Gradio interface based on task selection
|
47 |
+
def update_interface(change):
|
48 |
+
selected_task = task_selector.value
|
49 |
+
|
50 |
+
if selected_task == 'Translate':
|
51 |
+
iface.fn = translate_text
|
52 |
+
elif selected_task == 'Summarize':
|
53 |
+
iface.fn = summarize_text
|
54 |
+
elif selected_task == 'Paraphrase':
|
55 |
+
iface.fn = paraphrase_text
|
56 |
+
|
57 |
+
# Dropdown widget to select the task
|
58 |
+
task_selector = gr.Dropdown(
|
59 |
+
["Translate", "Summarize", "Paraphrase"],
|
60 |
+
default="Translate",
|
61 |
+
label="Select Task"
|
62 |
+
)
|
63 |
+
|
64 |
+
# Attach the update function to the dropdown widget
|
65 |
+
task_selector.observe(update_interface, names='value')
|
66 |
+
|
67 |
+
# Launch the Gradio app
|
68 |
+
iface.launch()
|