File size: 1,218 Bytes
4d16358
55b6ce3
de53c31
 
4d16358
55b6ce3
4d16358
55b6ce3
 
 
4d16358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
from transformers import AutoTokenizer, PreTrainedTokenizer, AutoConfig
import torch
from custom_model import CustomModel

# Load the model and tokenizer
model_name = "deepseek-ai/DeepSeek-V3"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = CustomModel.from_pretrained(model_name, config=config, trust_remote_code=True)

def classify_text(text):
    inputs = tokenizer(text, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    probabilities = torch.softmax(logits, dim=-1).tolist()[0]
    predicted_class = torch.argmax(logits, dim=-1).item()
    return {
        "Predicted Class": predicted_class,
        "Probabilities": probabilities
    }

# Create a Gradio interface
iface = gr.Interface(
    fn=classify_text,
    inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
    outputs=[
        gr.outputs.Label(label="Predicted Class"),
        gr.outputs.Label(label="Probabilities")
    ],
    title="DeepSeek-V3 Text Classification",
    description="Classify text using the DeepSeek-V3 model."
)

# Launch the interface
iface.launch()