Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,31 +20,44 @@ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_
|
|
20 |
print(f"Loading model from {model_name}...")
|
21 |
model = CustomModel.from_pretrained(model_name, config=config, revision=revision, trust_remote_code=True)
|
22 |
|
|
|
23 |
if model is None:
|
24 |
print("Failed to load model. Exiting...")
|
25 |
exit(1)
|
26 |
else:
|
27 |
print("Model loaded successfully.")
|
28 |
|
|
|
29 |
def classify_text(text):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Create a Gradio interface
|
41 |
try:
|
42 |
iface = gr.Interface(
|
43 |
-
fn=classify_text,
|
44 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
45 |
outputs=[
|
46 |
-
gr.Label(label="Predicted Class"),
|
47 |
-
gr.Label(label="Probabilities")
|
48 |
],
|
49 |
title="DeepSeek-V3 Text Classification",
|
50 |
description="Classify text using the DeepSeek-V3 model."
|
|
|
20 |
print(f"Loading model from {model_name}...")
|
21 |
model = CustomModel.from_pretrained(model_name, config=config, revision=revision, trust_remote_code=True)
|
22 |
|
23 |
+
# Check if the model loaded successfully
|
24 |
if model is None:
|
25 |
print("Failed to load model. Exiting...")
|
26 |
exit(1)
|
27 |
else:
|
28 |
print("Model loaded successfully.")
|
29 |
|
30 |
+
# Define the text classification function
|
31 |
def classify_text(text):
|
32 |
+
try:
|
33 |
+
# Tokenize the input text
|
34 |
+
inputs = tokenizer(text, return_tensors="pt")
|
35 |
+
# Pass the inputs to the model
|
36 |
+
outputs = model(**inputs)
|
37 |
+
# Get the logits and probabilities
|
38 |
+
logits = outputs.logits
|
39 |
+
probabilities = torch.softmax(logits, dim=-1).tolist()[0]
|
40 |
+
# Get the predicted class
|
41 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
42 |
+
return {
|
43 |
+
"Predicted Class": predicted_class,
|
44 |
+
"Probabilities": probabilities
|
45 |
+
}
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error during text classification: {e}")
|
48 |
+
return {
|
49 |
+
"Predicted Class": "Error",
|
50 |
+
"Probabilities": []
|
51 |
+
}
|
52 |
|
53 |
# Create a Gradio interface
|
54 |
try:
|
55 |
iface = gr.Interface(
|
56 |
+
fn=classify_text, # Function to call
|
57 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Input component
|
58 |
outputs=[
|
59 |
+
gr.Label(label="Predicted Class"), # Output component for predicted class
|
60 |
+
gr.Label(label="Probabilities") # Output component for probabilities
|
61 |
],
|
62 |
title="DeepSeek-V3 Text Classification",
|
63 |
description="Classify text using the DeepSeek-V3 model."
|