Spaces:
Runtime error
Runtime error
Create custom_model.py
Browse files- custom_model.py +20 -0
custom_model.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, AutoTokenizer, AutoConfig
|
4 |
+
|
5 |
+
# Define a custom model class
|
6 |
+
class CustomModel(PreTrainedModel):
|
7 |
+
config_class = None # Set this to the custom configuration class if available
|
8 |
+
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
# Implement your model architecture here
|
12 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
13 |
+
|
14 |
+
@classmethod
|
15 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
16 |
+
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
|
17 |
+
model = cls(config)
|
18 |
+
# Load the weights from the pretrained model
|
19 |
+
model.load_state_dict(torch.load(pretrained_model_name_or_path))
|
20 |
+
return model
|