File size: 25,598 Bytes
3fd29b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef6114
 
 
 
3fd29b8
1ef6114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd29b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84c32b
3fd29b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb87c1
3fd29b8
 
 
 
 
ae339c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import gradio as gr
from pydub import AudioSegment
from google import genai
from google.genai import types
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import os
import time
import mimetypes
from typing import List, Dict

# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024  # Convert MB to bytes

class PodcastGenerator:
    def __init__(self):
        pass

    async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None) -> Dict:
        example = """
{
    "topic": "AGI",
    "podcast": [
        {
            "speaker": 2,
            "line": "So, AGI, huh? Seems like everyone's talking about it these days."
        },
        {
            "speaker": 1,
            "line": "Yeah, it's definitely having a moment, isn't it?"
        },
        {
            "speaker": 2,
            "line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
        },
        {
            "speaker": 1,
            "line": "Honestly, it's the sheer scale of what AGI could do. We're talking about potentially reshaping well everything."
        },
        {
            "speaker": 2,
            "line": "No kidding, but let's be real. Sometimes it feels like every other headline is either hyping AGI up as this technological utopia or painting it as our inevitable robot overlords."
        },
        {
            "speaker": 1,
            "line": "It's easy to get lost in the noise, for sure."
        },
        {
            "speaker": 2,
            "line": "Exactly. So how about we try to cut through some of that, shall we?"
        },
        {
            "speaker": 1,
            "line": "Sounds like a plan."
        },
        {
            "speaker": 2,
            "line": "Okay, so first things first, AGI, what is it really? And I don't just mean some dictionary definition, we're talking about something way bigger than just a super smart computer, right?"
        },
        {
            "speaker": 1,
            "line": "Right, it's not just about more processing power or better algorithms, it's about a fundamental shift in how we think about intelligence itself."
        },
        {
            "speaker": 2,
            "line": "So like, instead of programming a machine for a specific task, we're talking about creating something that can learn and adapt like we do."
        },
        {
            "speaker": 1,
            "line": "Exactly, think of it this way: Right now, we've got AI that can beat a grandmaster at chess but ask that same AI to, say, write a poem or compose a symphony. No chance."
        },
        {
            "speaker": 2,
            "line": "Okay, I see. So, AGI is about bridging that gap, creating something that can move between those different realms of knowledge seamlessly."
        },
        {
            "speaker": 1,
            "line": "Precisely. It's about replicating that uniquely human ability to learn something new and apply that knowledge in completely different contexts and that's a tall order, let me tell you."
        },
        {
            "speaker": 2,
            "line": "I bet. I mean, think about how much we still don't even understand about our own brains."
        },
        {
            "speaker": 1,
            "line": "That's exactly it. We're essentially trying to reverse-engineer something we don't fully comprehend."
        },
        {
            "speaker": 2,
            "line": "And how are researchers even approaching that? What are some of the big ideas out there?"
        },
        {
            "speaker": 1,
            "line": "Well, there are a few different schools of thought. One is this idea of neuromorphic computing where they're literally trying to build computer chips that mimic the structure and function of the human brain."
        },
        {
            "speaker": 2,
            "line": "Wow, so like actually replicating the physical architecture of the brain. That's wild."
        },
        {
            "speaker": 1,
            "line": "It's pretty mind-blowing stuff and then you've got folks working on something called whole brain emulation."
        },
        {
            "speaker": 2,
            "line": "Okay, and what's that all about?"
        },
        {
            "speaker": 1,
            "line": "The basic idea there is to create a complete digital copy of a human brain down to the last neuron and synapse and run it on a sufficiently powerful computer simulation."
        },
        {
            "speaker": 2,
            "line": "Hold on, a digital copy of an entire brain, that sounds like something straight out of science fiction."
        },
        {
            "speaker": 1,
            "line": "It does, doesn't it? But it gives you an idea of the kind of ambition we're talking about here and the truth is we're still a long way off from truly achieving AGI, no matter which approach you look at."
        },
        {
            "speaker": 2,
            "line": "That makes sense but it's still exciting to think about the possibilities, even if they're a ways off."
        },
        {
            "speaker": 1,
            "line": "Absolutely and those possibilities are what really get people fired up about AGI, right? Yeah."
        },
        {
            "speaker": 2,
            "line": "For sure. In fact, I remember you mentioning something in that podcast about AGI's potential to revolutionize scientific research. Something about supercharging breakthroughs."
        },
        {
            "speaker": 1,
            "line": "Oh, absolutely. Imagine an AI that doesn't just crunch numbers but actually understands scientific data the way a human researcher does. We're talking about potential breakthroughs in everything from medicine and healthcare to material science and climate change."
        },
        {
            "speaker": 2,
            "line": "It's like giving scientists this incredibly powerful new tool to tackle some of the biggest challenges we face."
        },
        {
            "speaker": 1,
            "line": "Exactly, it could be a total game changer."
        },
        {
            "speaker": 2,
            "line": "Okay, but let's be real, every coin has two sides. What about the potential downsides of AGI? Because it can't all be sunshine and roses, right?"
        },
        {
            "speaker": 1,
            "line": "Right, there are definitely valid concerns. Probably the biggest one is the impact on the job market. As AGI gets more sophisticated, there's a real chance it could automate a lot of jobs that are currently done by humans."
        },
        {
            "speaker": 2,
            "line": "So we're not just talking about robots taking over factories but potentially things like, what, legal work, analysis, even creative fields?"
        },
        {
            "speaker": 1,
            "line": "Potentially, yes. And that raises a whole host of questions about what happens to those workers, how we retrain them, how we ensure that the benefits of AGI are shared equitably."
        },
        {
            "speaker": 2,
            "line": "Right, because it's not just about the technology itself, but how we choose to integrate it into society."
        },
        {
            "speaker": 1,
            "line": "Absolutely. We need to be having these conversations now about ethics, about regulation, about how to make sure AGI is developed and deployed responsibly."
        },
        {
            "speaker": 2,
            "line": "So it's less about preventing some kind of sci-fi robot apocalypse and more about making sure we're steering this technology in the right direction from the get-go."
        },
        {
            "speaker": 1,
            "line": "Exactly, AGI has the potential to be incredibly beneficial, but it's not going to magically solve all our problems. It's on us to make sure we're using it for good."
        },
        {
            "speaker": 2,
            "line": "It's like you said earlier, it's about shaping the future of intelligence."
        },
        {
            "speaker": 1,
            "line": "I like that. It really is."
        },
        {
            "speaker": 2,
            "line": "And honestly, that's a responsibility that extends beyond just the researchers and the policymakers."
        },
        {
            "speaker": 1,
            "line": "100%"
        },
        {
            "speaker": 2,
            "line": "So to everyone listening out there I'll leave you with this. As AGI continues to develop, what role do you want to play in shaping its future?"
        },
        {
            "speaker": 1,
            "line": "That's a question worth pondering."
        },
        {
            "speaker": 2,
            "line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
        },
        {
            "speaker": 1,
            "line": "Peace."
        }
    ]
}
        """

        if language == "Auto Detect":
            language_instruction = "- The podcast MUST be in the same language as the user input."
        else:
            language_instruction = f"- The podcast MUST be in {language} language"

        system_prompt = f"""
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
{language_instruction}
- The podcast should have 2 speakers.
- The podcast should be long.
- Do not use names for the speakers.
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
- The script must be in JSON format.
Follow this example structure:
{example}
"""
        user_prompt = ""
        if prompt and file_obj:
            user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
        elif prompt:
            user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
        else:
            user_prompt = "Please generate a podcast script based on the uploaded file."

        messages = []
        
        # If file is provided, add it to the messages
        if file_obj:
            file_data = await self._read_file_bytes(file_obj)
            mime_type = self._get_mime_type(file_obj.name)
            
            messages.append(
                types.Content(
                    role="user",
                    parts=[
                        types.Part.from_bytes(
                            data=file_data,
                            mime_type=mime_type,
                        )
                    ],
                )
            )
        
        # Add text prompt
        messages.append(
            types.Content(
                role="user",
                parts=[
                    types.Part.from_text(text=user_prompt)
                ],
            )
        )

        client = genai.Client(api_key=api_key)

        safety_settings = [
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "threshold": "BLOCK_NONE"
            }
        ]

        try:
            if progress:
                progress(0.3, "Generating podcast script...")
                
            # Add timeout to the API call
            response = await asyncio.wait_for(
                client.aio.models.generate_content(
                    model="gemini-2.0-flash",
                    contents=messages,
                    config=types.GenerateContentConfig(
                        temperature=1,
                        response_mime_type="application/json",
                        safety_settings=[
                            types.SafetySetting(
                                category=safety_setting["category"],
                                threshold=safety_setting["threshold"]
                            ) for safety_setting in safety_settings
                        ],
                        system_instruction=system_prompt
                    )
                ),
                timeout=60  # 60 seconds timeout
            )
        except asyncio.TimeoutError:
            raise Exception("The script generation request timed out. Please try again later.")
        except Exception as e:
            if "API key not valid" in str(e):
                raise Exception("Invalid API key. Please provide a valid Gemini API key.")
            elif "rate limit" in str(e).lower():
                raise Exception("Rate limit exceeded for the API key. Please try again later or provide your own Gemini API key.")
            else:
                raise Exception(f"Failed to generate podcast script: {e}")

        print(f"Generated podcast script:\n{response.text}")
        
        if progress:
            progress(0.4, "Script generated successfully!")
            
        return json.loads(response.text)
    
    async def _read_file_bytes(self, file_obj) -> bytes:
        """Read file bytes from a file object"""
        # Check file size before reading
        if hasattr(file_obj, 'size'):
            file_size = file_obj.size
        else:
            file_size = os.path.getsize(file_obj.name)
            
        if file_size > MAX_FILE_SIZE_BYTES:
            raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
            
        if hasattr(file_obj, 'read'):
            return file_obj.read()
        else:
            async with aiofiles.open(file_obj.name, 'rb') as f:
                return await f.read()
    
    def _get_mime_type(self, filename: str) -> str:
        """Determine MIME type based on file extension"""
        ext = os.path.splitext(filename)[1].lower()
        if ext == '.pdf':
            return "application/pdf"
        elif ext == '.txt':
            return "text/plain"
        else:
            # Fallback to the default mime type detector
            mime_type, _ = mimetypes.guess_type(filename)
            return mime_type or "application/octet-stream"

    async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
        voice = speaker1 if speaker == 1 else speaker2
        speech = edge_tts.Communicate(text, voice)
        
        temp_filename = f"temp_{uuid.uuid4()}.wav"
        try:
            # Add timeout to TTS generation
            await asyncio.wait_for(speech.save(temp_filename), timeout=30)  # 30 seconds timeout
            return temp_filename
        except asyncio.TimeoutError:
            if os.path.exists(temp_filename):
                os.remove(temp_filename)
            raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
        except Exception as e:
            if os.path.exists(temp_filename):
                os.remove(temp_filename)
            raise e

    async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
        if progress:
            progress(0.9, "Combining audio files...")
            
        combined_audio = AudioSegment.empty()
        for audio_file in audio_files:
            combined_audio += AudioSegment.from_file(audio_file)
            os.remove(audio_file)  # Clean up temporary files

        output_filename = f"output_{uuid.uuid4()}.wav"
        combined_audio.export(output_filename, format="wav")
        
        if progress:
            progress(1.0, "Podcast generated successfully!")
            
        return output_filename

    async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
        try:
            if progress:
                progress(0.1, "Starting podcast generation...")
                
            # Set overall timeout for the entire process
            return await asyncio.wait_for(
                self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
                timeout=600  # 10 minutes total timeout
            )
        except asyncio.TimeoutError:
            raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
        except Exception as e:
            raise Exception(f"Error generating podcast: {str(e)}")
    
    async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
        if progress:
            progress(0.2, "Generating podcast script...")
            
        podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
        
        if progress:
            progress(0.5, "Converting text to speech...")
        
        # Process TTS in batches for concurrent processing
        audio_files = []
        total_lines = len(podcast_json['podcast'])
        
        # Define batch size to control concurrency
        batch_size = 10  # Adjust based on system resources
        
        # Process in batches
        for batch_start in range(0, total_lines, batch_size):
            batch_end = min(batch_start + batch_size, total_lines)
            batch = podcast_json['podcast'][batch_start:batch_end]
            
            # Create tasks for concurrent processing
            tts_tasks = []
            for item in batch:
                tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
                tts_tasks.append(tts_task)
            
            try:
                # Process batch concurrently
                batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
                
                # Check for exceptions and handle results
                for i, result in enumerate(batch_results):
                    if isinstance(result, Exception):
                        # Clean up any files already created
                        for file in audio_files:
                            if os.path.exists(file):
                                os.remove(file)
                        raise Exception(f"Error generating speech: {str(result)}")
                    else:
                        audio_files.append(result)
                        
                # Update progress
                if progress:
                    current_progress = 0.5 + (0.4 * (batch_end / total_lines))
                    progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
            
            except Exception as e:
                # Clean up any files already created
                for file in audio_files:
                    if os.path.exists(file):
                        os.remove(file)
                raise Exception(f"Error in batch TTS generation: {str(e)}")
        
        combined_audio = await self.combine_audio_files(audio_files, progress)
        return combined_audio

async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
    start_time = time.time()

    voice_names = {
        "Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
        "Ava - English (United States)": "en-US-AvaMultilingualNeural",
        "Brian - English (United States)": "en-US-BrianMultilingualNeural",
        "Emma - English (United States)": "en-US-EmmaMultilingualNeural",
        "Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
        "Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
        "Remy - French (France)": "fr-FR-RemyMultilingualNeural",
        "Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
    }

    speaker1 = voice_names[speaker1]
    speaker2 = voice_names[speaker2]

    try:
        if progress:
            progress(0.05, "Processing input...")

        if not api_key:
            api_key = os.getenv("GENAI_API_KEY")
            if not api_key:
                raise Exception("No API key provided. Please provide a Gemini API key.")

        podcast_generator = PodcastGenerator()
        podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)

        end_time = time.time()
        print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
        return podcast
        
    except Exception as e:
        # Ensure we show a user-friendly error
        error_msg = str(e)
        if "rate limit" in error_msg.lower():
            raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
        elif "timeout" in error_msg.lower():
            raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
        else:
            raise Exception(f"Error: {error_msg}")

# Gradio UI
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key, progress=gr.Progress()):
    # Handle the file if uploaded
    file_obj = None
    if input_file is not None:
        file_obj = input_file
        
    # Use the progress function from Gradio
    def progress_callback(value, text):
        progress(value, text)

    # Run the async function in the event loop
    result = asyncio.run(process_input(
        input_text, 
        file_obj, 
        language, 
        speaker1, 
        speaker2, 
        api_key,
        progress_callback
    ))
    
    return result

def main():
    # Define language options
    language_options = [
        "Auto Detect",
        "Afrikaans", "Albanian", "Amharic", "Arabic", "Armenian", "Azerbaijani",
        "Bahasa Indonesian", "Bangla", "Basque", "Bengali", "Bosnian", "Bulgarian",
        "Burmese", "Catalan", "Chinese Cantonese", "Chinese Mandarin",
        "Chinese Taiwanese", "Croatian", "Czech", "Danish", "Dutch", "English",
        "Estonian", "Filipino", "Finnish", "French", "Galician", "Georgian",
        "German", "Greek", "Hebrew", "Hindi", "Hungarian", "Icelandic", "Irish",
        "Italian", "Japanese", "Javanese", "Kannada", "Kazakh", "Khmer", "Korean",
        "Lao", "Latvian", "Lithuanian", "Macedonian", "Malay", "Malayalam",
        "Maltese", "Mongolian", "Nepali", "Norwegian Bokmål", "Pashto", "Persian",
        "Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Sinhala",
        "Slovak", "Slovene", "Somali", "Spanish", "Sundanese", "Swahili",
        "Swedish", "Tamil", "Telugu", "Thai", "Turkish", "Ukrainian", "Urdu",
        "Uzbek", "Vietnamese", "Welsh", "Zulu"
    ]
    
    # Define voice options
    voice_options = [
        "Andrew - English (United States)",
        "Ava - English (United States)",
        "Brian - English (United States)",
        "Emma - English (United States)",
        "Florian - German (Germany)",
        "Seraphina - German (Germany)",
        "Remy - French (France)",
        "Vivienne - French (France)"
    ]
    
    # Create Gradio interface
    with gr.Blocks(title="PodcastGen 🎙️") as demo:
        gr.Markdown("# PodcastGen 🎙️")
        gr.Markdown("Generate a 2-speaker podcast from text input or documents!")
        
        with gr.Row():
            with gr.Column(scale=2):
                input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text for podcast generation...")
            
            with gr.Column(scale=1):
                input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
        
        with gr.Row():
            with gr.Column():
                api_key = gr.Textbox(label="Your Gemini API Key (Optional)", placeholder="Enter API key here if you're getting rate limited", type="password")
                language = gr.Dropdown(label="Language", choices=language_options, value="Auto Detect")

            with gr.Column():
                speaker1 = gr.Dropdown(label="Speaker 1 Voice", choices=voice_options, value="Andrew - English (United States)")
                speaker2 = gr.Dropdown(label="Speaker 2 Voice", choices=voice_options, value="Ava - English (United States)")
        
        generate_btn = gr.Button("Generate Podcast", variant="primary")
        
        with gr.Row():
            output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav")
            
        generate_btn.click(
            fn=generate_podcast_gradio,
            inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
            outputs=[output_audio]
        )
    
    demo.launch()

if __name__ == "__main__":
    main()