sarasad commited on
Commit
00be25c
·
1 Parent(s): a150f5f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+ import gradio as gr
3
+ import git
4
+ import os
5
+ os.system("pip install --upgrade pip")
6
+
7
+ #Load arabert preprocessor
8
+ import git
9
+ git.Git("arabert").clone("https://github.com/aub-mind/arabert")
10
+ from arabert.preprocess import ArabertPreprocessor
11
+ arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
12
+
13
+
14
+ #Load Model
15
+ from transformers import EncoderDecoderModel, AutoTokenizer
16
+ tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
17
+ model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
18
+ model.eval()
19
+
20
+ def generate_response(text, minimum_length, p, temperature):
21
+ text_clean = arabert_prep.preprocess(text)
22
+ inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
23
+ outputs = model.generate(input_ids = inputs.input_ids,
24
+ attention_mask = inputs.attention_mask,
25
+ do_sample = True,
26
+ min_length=minimum_length,
27
+ top_p = p,
28
+ temperature = temperature)
29
+ preds = tokenizer.batch_decode(outputs)
30
+ response = str(preds)
31
+ response = response.replace("\'", '')
32
+ response = response.replace("[[CLS]", '')
33
+ response = response.replace("[SEP]]", '')
34
+ response = str(arabert_prep.desegment(response))
35
+ return response
36
+
37
+ title = 'Empathetic Response Generation in Arabic'
38
+ description = 'This demo is for a BERT2BERT model trained for single-turn open-domain empathetic dialogue response generation in Modern Standard Arabic'
39
+ gr.Interface(fn=generate_response,
40
+ inputs=[
41
+ gr.inputs.Textbox(),
42
+ gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
43
+ gr.inputs.Slider(0.7, 1, step=0.1, label='Top-P'),
44
+ gr.inputs.Slider(1, 3, step=0.1, label='Temperature'),
45
+ ],
46
+ outputs="text",
47
+ title=title,
48
+ description=description).launch()