from pathlib import Path import numpy as np import torch import json from sklearn.metrics.pairwise import cosine_distances from .plda_model import PLDAModel from .demo_speaker_embeddings import DemoSpeakerEmbeddings class DemoPoolAnonymizer: def __init__(self, vec_type='xvector', N=200, N_star=100, distance='plda', proximity='farthest', device=None): # Pool anonymization method based on the primary baseline of the Voice Privacy Challenge 2020. # Given a speaker vector, the N most distant vectors in an external speaker pool are extracted, # and an average of a random subset of N_star vectors is computed and taken as new speaker vector. # Default distance measure is PLDA. self.vec_type = vec_type self.device = device self.N = N # number of most distant vectors to consider self.N_star = N_star # number of vectors to include in averaged vector self.distance = distance # distance measure, either 'plda' or 'cosine' self.proximity = proximity # proximity method, either 'farthest' (distant vectors), 'nearest', or 'closest' self.embedding_extractor = DemoSpeakerEmbeddings(vec_type=self.vec_type, device=self.device) self.pool_embeddings = None self.plda = None def load_parameters(self, model_dir: Path): self._load_settings(model_dir / 'settings.json') self.pool_embeddings = torch.load(model_dir / 'pool_embeddings' / f'speaker_vectors.pt', map_location=self.device) if self.distance == 'plda': self.plda = PLDAModel(train_embeddings=None, results_path=model_dir) def anonymize_embedding(self, audio, sr): speaker_embedding = self.embedding_extractor.extract_vector_from_audio(wave=audio, sr=sr) distances = self._compute_distances(vectors_a=self.pool_embeddings, vectors_b=speaker_embedding.unsqueeze(0)).squeeze() candidates = self._get_pool_candidates(distances) selected_anon_pool = np.random.choice(candidates, self.N_star, replace=False) anon_vec = torch.mean(self.pool_embeddings[selected_anon_pool], dim=0) return anon_vec def _compute_distances(self, vectors_a, vectors_b): if self.distance == 'plda': return 1 - self.plda.compute_distance(enrollment_vectors=vectors_a, trial_vectors=vectors_b) elif self.distance == 'cosine': return cosine_distances(X=vectors_a.cpu(), Y=vectors_b.cpu()) else: return [] def _get_pool_candidates(self, distances): if self.proximity == 'farthest': return np.argpartition(distances, -self.N)[-self.N:] elif self.proximity == 'nearest': return np.argpartition(distances, self.N)[:self.N] elif self.proximity == 'center': sorted_distances = np.sort(distances) return sorted_distances[len(sorted_distances)//2:(len(sorted_distances)//2)+self.N] def _load_settings(self, filename): with open(filename, 'r') as f: settings = json.load(f) self.N = settings['N'] if 'N' in settings else self.N self.N_star = settings['N*'] if 'N*' in settings else self.N_star self.distance = settings['distance'] if 'distance' in settings else self.distance self.proximity = settings['proximity'] if 'proximity' in settings else self.proximity self.vec_type = settings['vec_type'] if 'vec_type' in settings else self.vec_type