File size: 74,617 Bytes
42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 5472238 42ac90b 5472238 42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 6b9d2e8 42ac90b 5472238 42ac90b 6b9d2e8 42ac90b 5472238 42ac90b 5472238 42ac90b 6b9d2e8 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 5472238 42ac90b 6b9d2e8 42ac90b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### libraries import"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true,
"id": "oOnNfKjX4IAV"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n"
]
}
],
"source": [
"import os\n",
"\n",
"#gradio interface\n",
"import gradio as gr\n",
"\n",
"from transformers import AutoModelForCausalLM,AutoTokenizer\n",
"import torch\n",
"\n",
"#STT (speech to text)\n",
"from transformers import WhisperProcessor, WhisperForConditionalGeneration\n",
"import librosa\n",
"\n",
"#TTS (text to speech)\n",
"import torch\n",
"from TTS.api import TTS\n",
"from IPython.display import Audio\n",
"\n",
"#json request for APIs\n",
"import requests\n",
"import json\n",
"\n",
"#regular expressions\n",
"import re\n",
"\n",
"#langchain and function calling\n",
"from typing import List, Literal, Union\n",
"import requests\n",
"from functools import partial\n",
"import math\n",
"\n",
"\n",
"#langchain, not used anymore since I had to find another way fast to stop using the endpoint, but could be interesting to reuse \n",
"from langchain.tools.base import StructuredTool\n",
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import HuggingFaceTextGenInference\n",
"from langchain.chains import LLMChain\n",
"\n",
"\n",
"\n",
"from datetime import datetime, timedelta, timezone\n",
"from transformers import pipeline\n",
"import inspect"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from apis import *"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"COQUI_TOS_AGREED\"] = \"1\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Models loads"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"preprocessor_config.json: 100%|██████████| 185k/185k [00:00<00:00, 94.3MB/s]\n",
"tokenizer_config.json: 100%|██████████| 283k/283k [00:00<00:00, 1.05MB/s]\n",
"vocab.json: 100%|██████████| 836k/836k [00:00<00:00, 3.03MB/s]\n",
"tokenizer.json: 100%|██████████| 2.48M/2.48M [00:00<00:00, 50.6MB/s]\n",
"merges.txt: 100%|██████████| 494k/494k [00:00<00:00, 28.8MB/s]\n",
"normalizer.json: 100%|██████████| 52.7k/52.7k [00:00<00:00, 67.8MB/s]\n",
"added_tokens.json: 100%|██████████| 34.6k/34.6k [00:00<00:00, 38.7MB/s]\n",
"special_tokens_map.json: 100%|██████████| 2.19k/2.19k [00:00<00:00, 8.88MB/s]\n",
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
"config.json: 100%|██████████| 1.97k/1.97k [00:00<00:00, 4.46MB/s]\n",
"model.safetensors: 100%|██████████| 967M/967M [00:12<00:00, 74.9MB/s] \n",
"generation_config.json: 100%|██████████| 3.87k/3.87k [00:00<00:00, 39.0MB/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Downloading model to /Users/sasan.jafarnejad/Library/Application Support/tts/tts_models--multilingual--multi-dataset--xtts_v1.1\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1.87G/1.87G [00:24<00:00, 75.6MiB/s]\n",
"100%|██████████| 4.70k/4.70k [00:00<00:00, 17.9kiB/s]\n",
"100%|██████████| 294k/294k [00:00<00:00, 1.23MiB/s]\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Model's license - CPML\n",
" > Check https://coqui.ai/cpml.txt for more info.\n",
" > Using model: xtts\n"
]
}
],
"source": [
"# load model and processor for speech-to-text\n",
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\")\n",
"modelw = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")\n",
"modelw.config.forced_decoder_ids = None\n",
"\n",
"#load model for text to speech\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"tts = TTS(\"tts_models/multilingual/multi-dataset/xtts_v1.1\").to(device)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true,
"id": "JNALTDb0LT90"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"config.json: 100%|██████████| 1.42k/1.42k [00:00<00:00, 3.24MB/s]\n",
"model.safetensors: 100%|██████████| 1.11G/1.11G [00:13<00:00, 79.5MB/s]\n",
"tokenizer_config.json: 100%|██████████| 502/502 [00:00<00:00, 5.01MB/s]\n",
"sentencepiece.bpe.model: 100%|██████████| 5.07M/5.07M [00:00<00:00, 78.4MB/s]\n",
"tokenizer.json: 100%|██████████| 9.08M/9.08M [00:00<00:00, 61.5MB/s]\n",
"special_tokens_map.json: 100%|██████████| 239/239 [00:00<00:00, 372kB/s]\n"
]
}
],
"source": [
"#load model language recognition\n",
"model_ckpt = \"papluca/xlm-roberta-base-language-detection\"\n",
"pipe_language = pipeline(\"text-classification\", model=model_ckpt)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading checkpoint shards: 100%|██████████| 2/2 [00:01<00:00, 1.44it/s]\n"
]
}
],
"source": [
"#load model llama2\n",
"mn = 'stabilityai/StableBeluga-7B' #mn = \"TheBloke/Llama-2-7b-Chat-GPTQ\" --> other possibility \n",
"# model = AutoModelForCausalLM.from_pretrained(mn, device_map=0, load_in_4bit=True) #torch_dtype=torch.float16\n",
"model = AutoModelForCausalLM.from_pretrained(mn, device_map=0) #torch_dtype=torch.float16\n",
"# tokr = AutoTokenizer.from_pretrained(mn, load_in_4bit=True) #tokenizer\n",
"tokr = AutoTokenizer.from_pretrained(mn) #tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
"Loading checkpoint shards: 100%|██████████| 3/3 [00:10<00:00, 3.39s/it]\n"
]
}
],
"source": [
"#NexusRaven for function calling\n",
"model_id = \"Nexusflow/NexusRaven-13B\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"modelNexus = AutoModelForCausalLM.from_pretrained(model_id, device_map=0, load_in_4bit=True)\n",
"pipe = pipeline(\"text-generation\", model=modelNexus, tokenizer = tokenizer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function calling with NexusRaven "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# load api key from .env file\n",
"# weather api and tomtom api key\n",
"from dotenv import load_dotenv\n",
"load_dotenv()\n",
"WHEATHER_API_KEY = os.getenv(\"WEATHER_API_KEY\")\n",
"TOMTOM_KEY = os.getenv(\"TOMTOM_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"#FUNCTION CALLING \n",
"\n",
"##########################################################\n",
"# Step 1: Define the functions you want to articulate. ###\n",
"##########################################################\n",
"\n",
"# apis.py\n",
"\n",
"\n",
"#############################################################\n",
"# Step 2: Let's define some utils for building the prompt ###\n",
"#############################################################\n",
"\n",
"\n",
"def format_functions_for_prompt(*functions):\n",
" formatted_functions = []\n",
" for func in functions:\n",
" source_code = inspect.getsource(func)\n",
" docstring = inspect.getdoc(func)\n",
" formatted_functions.append(\n",
" f\"OPTION:\\n<func_start>{source_code}<func_end>\\n<docstring_start>\\n{docstring}\\n<docstring_end>\"\n",
" )\n",
" return \"\\n\".join(formatted_functions)\n",
"\n",
"\n",
"##############################\n",
"# Step 3: Construct Prompt ###\n",
"##############################\n",
"\n",
"\n",
"def construct_prompt(user_query: str, context):\n",
" formatted_prompt = format_functions_for_prompt(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)\n",
" formatted_prompt += f'\\n\\nContext : {context}'\n",
" formatted_prompt += f\"\\n\\nUser Query: Question: {user_query}\\n\"\n",
"\n",
" prompt = (\n",
" \"<human>:\\n\"\n",
" + formatted_prompt\n",
" + \"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\n",
" )\n",
" return prompt\n",
"\n",
"#######################################\n",
"# Step 4: Execute the function call ###\n",
"#######################################\n",
"\n",
"\n",
"def execute_function_call(model_output):\n",
" # Ignore everything after \"Reflection\" since that is not essential.\n",
" function_call = (\n",
" model_output[0][\"generated_text\"]\n",
" .strip()\n",
" .split(\"\\n\")[1]\n",
" .replace(\"Initial Answer:\", \"\")\n",
" .strip()\n",
" )\n",
"\n",
" try:\n",
" return eval(function_call)\n",
" except Exception as e:\n",
" return str(e)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# convert bytes to megabytes\n",
"def get_cuda_usage(): return round(torch.cuda.memory_allocated(\"cuda:0\")/1024/1024,2)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"before everything: 13728.13\n",
"after creating prompt: 13728.13\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/nn/modules.py:391: UserWarning: Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed.\n",
" warnings.warn('Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed.')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" \n",
" Thought: The purpose of the def search_along_route(latitude_depart, longitude_depart, city_destination, type_of_poi) is to return some of the closest points of interest along the route from the depart point, specified by its coordinates and a city destination.\n",
"Initial Answer: search_along_route(49.5999681, 6.1342493, 'Thionville','restaurant')\n",
"Reflection: The search_along_route function takes in four arguments: latitude_depart, longitude_depart, city_destination, and type_of_poi.\n",
"\n",
"The user has asked what restaurants are there on the road from Luxembourg Gare, which coordinates are lat 49.5999681, lon 6.1342493, to Thionville.\n",
"\n",
"The call provided is search_along_route(49.5999681, 6.1342493, 'Thionville','restaurant').\n",
"\n",
"The call can be improved because the function requires the latitude and longitude of the depart point, as well as the city destination. The call provided only provides the latitude and longitude of the depart point, and the city destination.\n",
"\n",
"The correct call would be\n"
]
}
],
"source": [
"# might be deleted\n",
"# Compute a Simple equation\n",
"print(f\"before everything: {get_cuda_usage()}\")\n",
"prompt = construct_prompt(\"What restaurants are there on the road from Luxembourg Gare, which coordinates are lat 49.5999681, lon 6.1342493, to Thionville?\", \"\")\n",
"print(f\"after creating prompt: {get_cuda_usage()}\")\n",
"model_output = pipe(\n",
" prompt, do_sample=False, max_new_tokens=300, return_full_text=False\n",
" )\n",
"print(model_output[0][\"generated_text\"])\n",
"#execute_function_call(pipe(construct_prompt(\"Is it raining in Belval, ?\"), do_sample=False, max_new_tokens=300, return_full_text=False))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"creating the pipe of model output: 13736.26\n",
"49.3579272\n",
"after execute function call: 13736.26\n",
"after garbage collect and empty_cache: 13736.26\n"
]
}
],
"source": [
"print(f\"creating the pipe of model output: {get_cuda_usage()}\")\n",
"result = execute_function_call(model_output)\n",
"print(f\"after execute function call: {get_cuda_usage()}\")\n",
"del model_output\n",
"import gc # garbage collect library\n",
"gc.collect()\n",
"torch.cuda.empty_cache() \n",
"print(f\"after garbage collect and empty_cache: {get_cuda_usage()}\")\n",
"#print(\"Model Output:\", model_output)\n",
"# print(\"Execution Result:\", result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## functions to process the anwser and the question"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"#generation of text with Stable beluga \n",
"def gen(p, maxlen=15, sample=True):\n",
" toks = tokr(p, return_tensors=\"pt\")\n",
" res = model.generate(**toks.to(\"cuda\"), max_new_tokens=maxlen, do_sample=sample).to('cpu')\n",
" return tokr.batch_decode(res)\n",
"\n",
"#to have a prompt corresponding to the specific format required by the fine-tuned model Stable Beluga\n",
"def mk_prompt(user, syst=\"### System:\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\n\"): return f\"{syst}### User: {user}\\n\\n### Assistant:\\n\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "yAJI0WyOLE8G"
},
"outputs": [],
"source": [
"def car_answer_only(complete_answer, general_context):\n",
" \"\"\"returns only the AI assistant answer, without all context, to reply to the user\"\"\"\n",
" pattern = r\"Assistant:\\\\n(.*)(</s>|[.!?](\\s|$))\" #pattern = r\"Assistant:\\\\n(.*?)</s>\"\n",
"\n",
" match = re.search(pattern, complete_answer, re.DOTALL)\n",
"\n",
" if match:\n",
" # Extracting the text\n",
" model_answer = match.group(1)\n",
" #print(complete_answer)\n",
" else:\n",
" #print(complete_answer)\n",
" model_answer = \"There has been an error with the generated response.\" \n",
"\n",
" general_context += model_answer\n",
" return (model_answer, general_context)\n",
"#print(model_answer)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "ViCEgogaENNV"
},
"outputs": [],
"source": [
"def FnAnswer(general_context, ques, place, time, delete_history, state):\n",
" \"\"\"function to manage the two different llms (function calling and basic answer) and call them one after the other\"\"\"\n",
" # Initialize state if it is None\n",
" if delete_history == \"Yes\":\n",
" state = None\n",
" if state is None:\n",
" conv_context = []\n",
" conv_context.append(general_context)\n",
" state = {}\n",
" state['context'] = conv_context\n",
" state['number'] = 0\n",
" state['last_question'] = \"\"\n",
" \n",
" if type(ques) != str: \n",
" ques = ques[0]\n",
" \n",
" place = definePlace(place) #which on the predefined places it is\n",
" \n",
" formatted_context = '\\n'.join(state['context'])\n",
" \n",
" #updated at every question\n",
" general_context = f\"\"\"\n",
" Recent conversation history: '{formatted_context}' (If empty, this indicates the beginning of the conversation).\n",
"\n",
" Previous question from the user: '{state['last_question']}' (This may or may not be related to the current question).\n",
"\n",
" User information: The user is inside a car in {place[0]}, with latitude {place[1]} and longitude {place[2]}. The user is mobile and can drive to different destinations. It is currently {time}\n",
"\n",
" \"\"\"\n",
" #first llm call (function calling model, NexusRaven)\n",
" model_output= pipe(construct_prompt(ques, general_context), do_sample=False, max_new_tokens=300, return_full_text=False)\n",
" call = execute_function_call(model_output) #call variable is formatted to as a call to a specific function with the required parameters\n",
" print(call)\n",
" #this is what will erase the model_output from the GPU memory to free up space\n",
" del model_output\n",
" import gc # garbage collect library\n",
" gc.collect()\n",
" torch.cuda.empty_cache() \n",
" \n",
" #updated at every question\n",
" general_context += f'This information might be of help, use if it seems relevant, and ignore if not relevant to reply to the user: \"{call}\". '\n",
" \n",
" #question formatted for the StableBeluga llm (second llm), using the output of the first llm as context in general_context\n",
" question=f\"\"\"Reply to the user and answer any question with the help of the provided context.\n",
"\n",
" ## Context\n",
"\n",
" {general_context} .\n",
"\n",
" ## Question\n",
"\n",
" {ques}\"\"\"\n",
"\n",
" complete_answer = str(gen(mk_prompt(question), 100)) #answer generation with StableBeluga (2nd llm)\n",
"\n",
" model_answer, general_context= car_answer_only(complete_answer, general_context) #to retrieve only the car answer \n",
" \n",
" language = pipe_language(model_answer, top_k=1, truncation=True)[0]['label'] #detect the language of the answer, to modify the text-to-speech consequently\n",
" \n",
" state['last_question'] = ques #add the current question as 'last question' for the next question's context\n",
" \n",
" state['number']= state['number'] + 1 #adds 1 to the number of interactions with the car\n",
"\n",
" state['context'].append(str(state['number']) + '. User question: '+ ques + ', Model answer: ' + model_answer) #modifies the context\n",
" \n",
" #print(\"contexte : \" + '\\n'.join(state['context']))\n",
" \n",
" if len(state['context'])>5: #6 questions maximum in the context to avoid having too many information\n",
" state['context'] = state['context'][1:]\n",
"\n",
" return model_answer, state['context'], state, language"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "9WQlYePVLrTN"
},
"outputs": [],
"source": [
"def transcript(general_context, link_to_audio, voice, place, time, delete_history, state):\n",
" \"\"\"this function manages speech-to-text to input Fnanswer function and text-to-speech with the Fnanswer output\"\"\"\n",
" # load audio from a specific path\n",
" audio_path = link_to_audio\n",
" audio_array, sampling_rate = librosa.load(link_to_audio, sr=16000) # \"sr=16000\" ensures that the sampling rate is as required\n",
"\n",
"\n",
" # process the audio array\n",
" input_features = processor(audio_array, sampling_rate, return_tensors=\"pt\").input_features\n",
"\n",
"\n",
" predicted_ids = modelw.generate(input_features)\n",
"\n",
" transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
"\n",
" quest_processing = FnAnswer(general_context, transcription, place, time, delete_history, state)\n",
" \n",
" state=quest_processing[2]\n",
" \n",
" print(\"langue \" + quest_processing[3])\n",
"\n",
" tts.tts_to_file(text= str(quest_processing[0]),\n",
" file_path=\"output.wav\",\n",
" speaker_wav=f'Audio_Files/{voice}.wav',\n",
" language=quest_processing[3],\n",
" emotion = \"angry\")\n",
"\n",
" audio_path = \"output.wav\"\n",
" return audio_path, state['context'], state"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def definePlace(place):\n",
" if(place == 'Luxembourg Gare, Luxembourg'):\n",
" return('Luxembourg Gare', '49.5999681', '6.1342493' )\n",
" elif (place =='Kirchberg Campus, Kirchberg'):\n",
" return('Kirchberg Campus, Luxembourg', '49.62571206478235', '6.160082636815114')\n",
" elif (place =='Belval Campus, Belval'):\n",
" return('Belval-Université, Esch-sur-Alzette', '49.499531', '5.9462903')\n",
" elif (place =='Eiffel Tower, Paris'):\n",
" return('Eiffel Tower, Paris', '48.8582599', '2.2945006')\n",
" elif (place=='Thionville, France'):\n",
" return('Thionville, France', '49.357927', '6.167587')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interfaces (text and audio)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Running on local URL: http://0.0.0.0:7860\n",
"\n",
"Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024/03/15 19:02:04 [W] [service.go:132] login to server failed: dial tcp 44.237.78.176:7000: i/o timeout\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://localhost:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Keyboard interruption in main thread... closing server.\n",
"Killing tunnel 0.0.0.0:7860 <> None\n"
]
},
{
"data": {
"text/plain": []
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#INTERFACE WITH ONLY TEXT\n",
"\n",
"# Generate options for hours (00-23) \n",
"hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
"\n",
"model_answer= ''\n",
"general_context= ''\n",
"# Define the initial state with some initial context.\n",
"print(general_context)\n",
"initial_state = {'context': general_context}\n",
"initial_context= initial_state['context']\n",
"# Create the Gradio interface.\n",
"iface = gr.Interface(\n",
" fn=FnAnswer,\n",
" inputs=[\n",
" gr.Textbox(value=initial_context, visible=False),\n",
" gr.Textbox(lines=2, placeholder=\"Type your message here...\"),\n",
" gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
" gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
" gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
" gr.State() # This will keep track of the context state across interactions.\n",
" ],\n",
" outputs=[\n",
" gr.Textbox(),\n",
" gr.Textbox(visible=False),\n",
" gr.State()\n",
" ]\n",
")\n",
"gr.close_all()\n",
"# Launch the interface.\n",
"iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860)\n",
"#contextual=gr.Textbox(value=general_context, visible=False)\n",
"#demo = gr.Interface(fn=FnAnswer, inputs=[contextual,\"text\"], outputs=[\"text\", contextual])\n",
"\n",
"#demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"collapsed": true,
"id": "mZTt3y3_KOOF"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Running on local URL: http://0.0.0.0:7860\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[69], line 42\u001b[0m\n\u001b[1;32m 40\u001b[0m gr\u001b[38;5;241m.\u001b[39mclose_all()\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# Launch the interface.\u001b[39;00m\n\u001b[0;32m---> 42\u001b[0m \u001b[43miface\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlaunch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdebug\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mshare\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mserver_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m0.0.0.0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mserver_port\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m7860\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mssl_verify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/gradio/blocks.py:2068\u001b[0m, in \u001b[0;36mBlocks.launch\u001b[0;34m(self, inline, inbrowser, share, debug, max_threads, auth, auth_message, prevent_thread_lock, show_error, server_name, server_port, height, width, favicon_path, ssl_keyfile, ssl_certfile, ssl_keyfile_password, ssl_verify, quiet, show_api, allowed_paths, blocked_paths, root_path, app_kwargs, state_session_capacity, share_server_address, share_server_protocol, _frontend)\u001b[0m\n\u001b[1;32m 2066\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 2067\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mshare_url \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 2068\u001b[0m share_url \u001b[38;5;241m=\u001b[39m \u001b[43mnetworking\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msetup_tunnel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2069\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mserver_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2070\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_port\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mserver_port\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2071\u001b[0m \u001b[43m \u001b[49m\u001b[43mshare_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshare_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2072\u001b[0m \u001b[43m \u001b[49m\u001b[43mshare_server_address\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshare_server_address\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2073\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2074\u001b[0m parsed_url \u001b[38;5;241m=\u001b[39m urlparse(share_url)\n\u001b[1;32m 2075\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mshare_url \u001b[38;5;241m=\u001b[39m urlunparse(\n\u001b[1;32m 2076\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mshare_server_protocol,) \u001b[38;5;241m+\u001b[39m parsed_url[\u001b[38;5;241m1\u001b[39m:]\n\u001b[1;32m 2077\u001b[0m )\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/gradio/networking.py:229\u001b[0m, in \u001b[0;36msetup_tunnel\u001b[0;34m(local_host, local_port, share_token, share_server_address)\u001b[0m\n\u001b[1;32m 227\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m share_server_address \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 228\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 229\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mhttpx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mGRADIO_API_SERVER\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m30\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 230\u001b[0m payload \u001b[38;5;241m=\u001b[39m response\u001b[38;5;241m.\u001b[39mjson()[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 231\u001b[0m remote_host, remote_port \u001b[38;5;241m=\u001b[39m payload[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhost\u001b[39m\u001b[38;5;124m\"\u001b[39m], \u001b[38;5;28mint\u001b[39m(payload[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mport\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_api.py:196\u001b[0m, in \u001b[0;36mget\u001b[0;34m(url, params, headers, cookies, auth, proxy, proxies, follow_redirects, cert, verify, timeout, trust_env)\u001b[0m\n\u001b[1;32m 173\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget\u001b[39m(\n\u001b[1;32m 174\u001b[0m url: URLTypes,\n\u001b[1;32m 175\u001b[0m \u001b[38;5;241m*\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 186\u001b[0m trust_env: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 187\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Response:\n\u001b[1;32m 188\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 189\u001b[0m \u001b[38;5;124;03m Sends a `GET` request.\u001b[39;00m\n\u001b[1;32m 190\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;124;03m on this function, as `GET` requests should not include a request body.\u001b[39;00m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 196\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[43m \u001b[49m\u001b[43mcookies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcookies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 202\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 203\u001b[0m \u001b[43m \u001b[49m\u001b[43mproxy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 204\u001b[0m \u001b[43m \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m \u001b[49m\u001b[43mcert\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcert\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 207\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 208\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 209\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_env\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_env\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 210\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_api.py:104\u001b[0m, in \u001b[0;36mrequest\u001b[0;34m(method, url, params, content, data, files, json, headers, cookies, auth, proxy, proxies, timeout, follow_redirects, verify, cert, trust_env)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;124;03mSends an HTTP request.\u001b[39;00m\n\u001b[1;32m 46\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;124;03m```\u001b[39;00m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Client(\n\u001b[1;32m 96\u001b[0m cookies\u001b[38;5;241m=\u001b[39mcookies,\n\u001b[1;32m 97\u001b[0m proxy\u001b[38;5;241m=\u001b[39mproxy,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 102\u001b[0m trust_env\u001b[38;5;241m=\u001b[39mtrust_env,\n\u001b[1;32m 103\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m client:\n\u001b[0;32m--> 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 105\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 106\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 107\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiles\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfiles\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjson\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 111\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 112\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 114\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 115\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_client.py:828\u001b[0m, in \u001b[0;36mClient.request\u001b[0;34m(self, method, url, content, data, files, json, params, headers, cookies, auth, follow_redirects, timeout, extensions)\u001b[0m\n\u001b[1;32m 813\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(message, \u001b[38;5;167;01mDeprecationWarning\u001b[39;00m)\n\u001b[1;32m 815\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuild_request(\n\u001b[1;32m 816\u001b[0m method\u001b[38;5;241m=\u001b[39mmethod,\n\u001b[1;32m 817\u001b[0m url\u001b[38;5;241m=\u001b[39murl,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 826\u001b[0m extensions\u001b[38;5;241m=\u001b[39mextensions,\n\u001b[1;32m 827\u001b[0m )\n\u001b[0;32m--> 828\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_client.py:915\u001b[0m, in \u001b[0;36mClient.send\u001b[0;34m(self, request, stream, auth, follow_redirects)\u001b[0m\n\u001b[1;32m 907\u001b[0m follow_redirects \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 908\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfollow_redirects\n\u001b[1;32m 909\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(follow_redirects, UseClientDefault)\n\u001b[1;32m 910\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m follow_redirects\n\u001b[1;32m 911\u001b[0m )\n\u001b[1;32m 913\u001b[0m auth \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_request_auth(request, auth)\n\u001b[0;32m--> 915\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_auth\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 916\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 917\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 918\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 919\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 920\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 921\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 922\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m stream:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_client.py:943\u001b[0m, in \u001b[0;36mClient._send_handling_auth\u001b[0;34m(self, request, auth, follow_redirects, history)\u001b[0m\n\u001b[1;32m 940\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(auth_flow)\n\u001b[1;32m 942\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 943\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_redirects\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 944\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 945\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 946\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhistory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 947\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 948\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 949\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_client.py:980\u001b[0m, in \u001b[0;36mClient._send_handling_redirects\u001b[0;34m(self, request, follow_redirects, history)\u001b[0m\n\u001b[1;32m 977\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequest\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m 978\u001b[0m hook(request)\n\u001b[0;32m--> 980\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_single_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 981\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 982\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_client.py:1016\u001b[0m, in \u001b[0;36mClient._send_single_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempted to send an async request with a sync Client instance.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1013\u001b[0m )\n\u001b[1;32m 1015\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m request_context(request\u001b[38;5;241m=\u001b[39mrequest):\n\u001b[0;32m-> 1016\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mtransport\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1018\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(response\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[1;32m 1020\u001b[0m response\u001b[38;5;241m.\u001b[39mrequest \u001b[38;5;241m=\u001b[39m request\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpx/_transports/default.py:231\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 218\u001b[0m req \u001b[38;5;241m=\u001b[39m httpcore\u001b[38;5;241m.\u001b[39mRequest(\n\u001b[1;32m 219\u001b[0m method\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mmethod,\n\u001b[1;32m 220\u001b[0m url\u001b[38;5;241m=\u001b[39mhttpcore\u001b[38;5;241m.\u001b[39mURL(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 228\u001b[0m extensions\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[1;32m 229\u001b[0m )\n\u001b[1;32m 230\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[0;32m--> 231\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 233\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[1;32m 235\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Response(\n\u001b[1;32m 236\u001b[0m status_code\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mstatus,\n\u001b[1;32m 237\u001b[0m headers\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mheaders,\n\u001b[1;32m 238\u001b[0m stream\u001b[38;5;241m=\u001b[39mResponseStream(resp\u001b[38;5;241m.\u001b[39mstream),\n\u001b[1;32m 239\u001b[0m extensions\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[1;32m 240\u001b[0m )\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/connection_pool.py:268\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m ShieldCancellation():\n\u001b[1;32m 267\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresponse_closed(status)\n\u001b[0;32m--> 268\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 269\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 270\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/connection_pool.py:251\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 250\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 251\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ConnectionNotAvailable:\n\u001b[1;32m 253\u001b[0m \u001b[38;5;66;03m# The ConnectionNotAvailable exception is a special case, that\u001b[39;00m\n\u001b[1;32m 254\u001b[0m \u001b[38;5;66;03m# indicates we need to retry the request on a new connection.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[38;5;66;03m# might end up as an HTTP/2 connection, but which actually ends\u001b[39;00m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;66;03m# up as HTTP/1.1.\u001b[39;00m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pool_lock:\n\u001b[1;32m 261\u001b[0m \u001b[38;5;66;03m# Maintain our position in the request queue, but reset the\u001b[39;00m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;66;03m# status so that the request becomes queued again.\u001b[39;00m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/connection.py:103\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connection\u001b[38;5;241m.\u001b[39mis_available():\n\u001b[1;32m 101\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ConnectionNotAvailable()\n\u001b[0;32m--> 103\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_connection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/http11.py:133\u001b[0m, in \u001b[0;36mHTTP11Connection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Trace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse_closed\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m 132\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_response_closed()\n\u001b[0;32m--> 133\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/http11.py:111\u001b[0m, in \u001b[0;36mHTTP11Connection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Trace(\n\u001b[1;32m 104\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreceive_response_headers\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request, kwargs\n\u001b[1;32m 105\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m 106\u001b[0m (\n\u001b[1;32m 107\u001b[0m http_version,\n\u001b[1;32m 108\u001b[0m status,\n\u001b[1;32m 109\u001b[0m reason_phrase,\n\u001b[1;32m 110\u001b[0m headers,\n\u001b[0;32m--> 111\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_receive_response_headers\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 112\u001b[0m trace\u001b[38;5;241m.\u001b[39mreturn_value \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 113\u001b[0m http_version,\n\u001b[1;32m 114\u001b[0m status,\n\u001b[1;32m 115\u001b[0m reason_phrase,\n\u001b[1;32m 116\u001b[0m headers,\n\u001b[1;32m 117\u001b[0m )\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Response(\n\u001b[1;32m 120\u001b[0m status\u001b[38;5;241m=\u001b[39mstatus,\n\u001b[1;32m 121\u001b[0m headers\u001b[38;5;241m=\u001b[39mheaders,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 127\u001b[0m },\n\u001b[1;32m 128\u001b[0m )\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/http11.py:176\u001b[0m, in \u001b[0;36mHTTP11Connection._receive_response_headers\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m 173\u001b[0m timeout \u001b[38;5;241m=\u001b[39m timeouts\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mread\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 175\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 176\u001b[0m event \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_receive_event\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(event, h11\u001b[38;5;241m.\u001b[39mResponse):\n\u001b[1;32m 178\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_sync/http11.py:212\u001b[0m, in \u001b[0;36mHTTP11Connection._receive_event\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 209\u001b[0m event \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_h11_state\u001b[38;5;241m.\u001b[39mnext_event()\n\u001b[1;32m 211\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m event \u001b[38;5;129;01mis\u001b[39;00m h11\u001b[38;5;241m.\u001b[39mNEED_DATA:\n\u001b[0;32m--> 212\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_network_stream\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 213\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mREAD_NUM_BYTES\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 214\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 216\u001b[0m \u001b[38;5;66;03m# If we feed this case through h11 we'll raise an exception like:\u001b[39;00m\n\u001b[1;32m 217\u001b[0m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;66;03m# httpcore.RemoteProtocolError: can't handle event type\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;66;03m# perspective. Instead we handle this case distinctly and treat\u001b[39;00m\n\u001b[1;32m 223\u001b[0m \u001b[38;5;66;03m# it as a ConnectError.\u001b[39;00m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;241m==\u001b[39m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_h11_state\u001b[38;5;241m.\u001b[39mtheir_state \u001b[38;5;241m==\u001b[39m h11\u001b[38;5;241m.\u001b[39mSEND_RESPONSE:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/httpcore/_backends/sync.py:126\u001b[0m, in \u001b[0;36mSyncStream.read\u001b[0;34m(self, max_bytes, timeout)\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_exceptions(exc_map):\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sock\u001b[38;5;241m.\u001b[39msettimeout(timeout)\n\u001b[0;32m--> 126\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmax_bytes\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/usr/lib/python3.10/ssl.py:1259\u001b[0m, in \u001b[0;36mSSLSocket.recv\u001b[0;34m(self, buflen, flags)\u001b[0m\n\u001b[1;32m 1255\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1256\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1257\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 1258\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1259\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbuflen\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1260\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1261\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv(buflen, flags)\n",
"File \u001b[0;32m/usr/lib/python3.10/ssl.py:1132\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m, buffer)\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1133\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m SSLError \u001b[38;5;28;01mas\u001b[39;00m x:\n\u001b[1;32m 1134\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m x\u001b[38;5;241m.\u001b[39margs[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m==\u001b[39m SSL_ERROR_EOF \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msuppress_ragged_eofs:\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"#INTERFACE WITH AUDIO TO AUDIO\n",
"\n",
"#to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/ \n",
"#in \"Insecure origins treated as secure\", enable it and relaunch chrome\n",
"\n",
"#example question: \n",
"# what's the weather like outside?\n",
"# What's the closest restaurant from here?\n",
"\n",
"\n",
"\n",
"# Generate options for hours (00-23) \n",
"hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
"\n",
"model_answer= ''\n",
"general_context= ''\n",
"# Define the initial state with some initial context.\n",
"print(general_context)\n",
"initial_state = {'context': general_context}\n",
"initial_context= initial_state['context']\n",
"# Create the Gradio interface.\n",
"iface = gr.Interface(\n",
" fn=transcript,\n",
" inputs=[\n",
" gr.Textbox(value=initial_context, visible=False),\n",
" gr.Audio( type='filepath', label = 'input audio'),\n",
" gr.Radio(choices=['Donald Trump', 'Eddie Murphy'], label='Choose a voice', value= 'Donald Trump', show_label=True), # Radio button for voice selection\n",
" gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
" gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
" gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
" gr.State() # This will keep track of the context state across interactions.\n",
" ],\n",
" outputs=[\n",
" gr.Audio(label = 'output audio'),\n",
" gr.Textbox(visible=False),\n",
" gr.State()\n",
" ]\n",
")\n",
"#close all interfaces open to make the port available\n",
"gr.close_all()\n",
"# Launch the interface.\n",
"iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860, ssl_verify=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Other possible APIs to use"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"ename": "JSONDecodeError",
"evalue": "Expecting value: line 1 column 1 (char 0)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/requests/models.py:971\u001b[0m, in \u001b[0;36mResponse.json\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 971\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcomplexjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloads\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 972\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m JSONDecodeError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 973\u001b[0m \u001b[38;5;66;03m# Catch JSON-related errors and raise as requests.JSONDecodeError\u001b[39;00m\n\u001b[1;32m 974\u001b[0m \u001b[38;5;66;03m# This aliases json.JSONDecodeError and simplejson.JSONDecodeError\u001b[39;00m\n",
"File \u001b[0;32m/usr/lib/python3.10/json/__init__.py:346\u001b[0m, in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 344\u001b[0m parse_int \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m parse_float \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 345\u001b[0m parse_constant \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_pairs_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kw):\n\u001b[0;32m--> 346\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_default_decoder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 347\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
"File \u001b[0;32m/usr/lib/python3.10/json/decoder.py:337\u001b[0m, in \u001b[0;36mJSONDecoder.decode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 333\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Return the Python representation of ``s`` (a ``str`` instance\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[38;5;124;03mcontaining a JSON document).\u001b[39;00m\n\u001b[1;32m 335\u001b[0m \n\u001b[1;32m 336\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m--> 337\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraw_decode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_w\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m end \u001b[38;5;241m=\u001b[39m _w(s, end)\u001b[38;5;241m.\u001b[39mend()\n",
"File \u001b[0;32m/usr/lib/python3.10/json/decoder.py:355\u001b[0m, in \u001b[0;36mJSONDecoder.raw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m--> 355\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m JSONDecodeError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpecting value\u001b[39m\u001b[38;5;124m\"\u001b[39m, s, err\u001b[38;5;241m.\u001b[39mvalue) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m obj, end\n",
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[80], line 25\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(results)\n\u001b[0;32m---> 25\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43msearch_nearby\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m49.625892805337514\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m6.160417066963513\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43myour location\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mTOMTOM_KEY\u001b[49m\u001b[43m)\u001b[49m)\n",
"Cell \u001b[0;32mIn[80], line 17\u001b[0m, in \u001b[0;36msearch_nearby\u001b[0;34m(lat, lon, city, key)\u001b[0m\n\u001b[1;32m 9\u001b[0m results \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 11\u001b[0m r \u001b[38;5;241m=\u001b[39m requests\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://api.tomtom.com/search/2/nearbySearch/.json?key=\u001b[39m\u001b[38;5;132;01m{0}\u001b[39;00m\u001b[38;5;124m&lat=\u001b[39m\u001b[38;5;132;01m{1}\u001b[39;00m\u001b[38;5;124m&lon=\u001b[39m\u001b[38;5;132;01m{2}\u001b[39;00m\u001b[38;5;124m&radius=10000&limit=50\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 12\u001b[0m key,\n\u001b[1;32m 13\u001b[0m lat,\n\u001b[1;32m 14\u001b[0m lon\n\u001b[1;32m 15\u001b[0m ))\n\u001b[0;32m---> 17\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m result \u001b[38;5;129;01min\u001b[39;00m \u001b[43mr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjson\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresults\u001b[39m\u001b[38;5;124m'\u001b[39m]:\n\u001b[1;32m 18\u001b[0m results\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(result[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpoi\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcategories\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpoi\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mint\u001b[39m(result[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdist\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m meters far from \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcity\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(results) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m7\u001b[39m:\n",
"File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/requests/models.py:975\u001b[0m, in \u001b[0;36mResponse.json\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 971\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m complexjson\u001b[38;5;241m.\u001b[39mloads(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 972\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m JSONDecodeError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 973\u001b[0m \u001b[38;5;66;03m# Catch JSON-related errors and raise as requests.JSONDecodeError\u001b[39;00m\n\u001b[1;32m 974\u001b[0m \u001b[38;5;66;03m# This aliases json.JSONDecodeError and simplejson.JSONDecodeError\u001b[39;00m\n\u001b[0;32m--> 975\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m RequestsJSONDecodeError(e\u001b[38;5;241m.\u001b[39mmsg, e\u001b[38;5;241m.\u001b[39mdoc, e\u001b[38;5;241m.\u001b[39mpos)\n",
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)"
]
}
],
"source": [
"\n",
"def search_nearby(lat, lon, city, key):\n",
" \"\"\"\n",
" :param lat: latitude\n",
" :param lon: longitude\n",
" :param key: api key\n",
" :param type: type of poi\n",
" :return: [5] results ['poi']['name']/['freeformAddress'] || ['position']['lat']/['lon']\n",
" \"\"\"\n",
" results = []\n",
"\n",
" r = requests.get('https://api.tomtom.com/search/2/nearbySearch/.json?key={0}&lat={1}&lon={2}&radius=10000&limit=50'.format(\n",
" key,\n",
" lat,\n",
" lon\n",
" ))\n",
"\n",
" for result in r.json()['results']:\n",
" results.append(f\"The {' '.join(result['poi']['categories'])} {result['poi']['name']} is {int(result['dist'])} meters far from {city}\")\n",
" if len(results) == 7:\n",
" break\n",
"\n",
" return \". \".join(results)\n",
"\n",
"\n",
"print(search_nearby('49.625892805337514', '6.160417066963513', 'your location', TOMTOM_KEY))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|