MetricCompare / app.py
sasha's picture
sasha HF staff
Update app.py
db77a12
raw
history blame
6.38 kB
import streamlit as st
from evaluate import evaluator
import evaluate
import datasets
from huggingface_hub import HfApi, ModelFilter
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForMaskedLM
from transformers import pipeline
import matplotlib.pyplot as plt
st.title("Metric Compare")
st.markdown("### Choose the dataset you want to use for the comparison:")
api = HfApi()
dsets = [d.id for d in api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20) if d.id !='glue']
dset = st.selectbox('Choose a dataset from the Hub', options=dsets)
info = datasets.get_dataset_infos(dset)
dset_config = st.selectbox('What config do you want to use?', options=list(info))
splitlist= []
for s in info[dset_config].splits:
splitlist.append(s)
dset_split = st.selectbox('Choose a dataset split for evaluation', options=splitlist)
st.markdown("### Now select up to 5 models to compare their performance:")
filt = ModelFilter(trained_dataset=dset)
all_models = [m.modelId for m in api.list_models(filter=filt, sort = "downloads", direction=-1, limit = 20) if 't5' not in m.tags]
models = st.multiselect(
'Choose the models that have been trained/finetuned on this dataset',
options=all_models)
st.markdown("### What two metrics do you want to compare?")
metrics = st.multiselect(
'Choose the metrics for the comparison',
options=['f1', 'accuracy', 'precision', 'recall'])
st.markdown("### Please wait for the dataset and models to load (this can take some time if they are big!")
### Loading data
try:
data = datasets.load_dataset(dset, split=dset_split)
st.text("Loaded the validation split of dataset "+ str(dset))
except:
data = datasets.load_dataset(dset, split="test")
st.text("Loaded the test split of dataset "+ str(dset))
st.text("Sorry, I can't load this dataset... try another one!")
### Loading models
for i in range (len(models)):
try:
globals()[f"tokenizer_{i}"] = AutoTokenizer.from_pretrained(models[i])
globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(models[i])
st.text("Loaded model "+ str(models[i]))
except:
st.text("Sorry, I can't load model "+ str(models[i]))
### Defining metrics
for i in range (len(metrics)):
try:
globals()[f"metrics[i]"] = evaluate.load(metrics[i])
except:
st.text("Sorry, I can't load metric "+ str(metrics[i]) +"... Try another one!")
### Defining Evaluator
eval = evaluator("text-classification")
### Defining pipelines
st.markdown("### Help us pick the right labels for your models")
st.text("The labels for your dataset are: "+ str(data.features['label'].names))
"""
for i in range (len(model_list)):
st.text("The labels for your dataset are: "+ str(data.features['label'].names))
print(model_list[i])
print(AutoConfig.from_pretrained(models[0]).id2label)
for i in range (len(models)):
try:
globals()[f"pipe1_{i}"] = AutoTokenizer.from_pretrained(models[i])
globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(models[i])
st.text("Loaded model "+ str(models[i]))
except:
st.text("Sorry, I can't load model "+ str(models[i]))
pipe1 = pipeline("text-classification", model=model1, tokenizer= tokenizer1, device=0)
res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy,
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},)
res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1,
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},)
print({**res_accuracy1, **res_f11})
pipe2 = pipeline("text-classification", model=model2, tokenizer= tokenizer2, device=0)
res_accuracy2 = eval.compute(model_or_pipeline=pipe2, data=data, metric=accuracy,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
res_f12 = eval.compute(model_or_pipeline=pipe2, data=data, metric=f1,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
print({**res_accuracy2, **res_f12})
pipe3 = pipeline("text-classification", model=model3, tokenizer= tokenizer3, device=0)
res_accuracy3 = eval.compute(model_or_pipeline=pipe3, data=data, metric=accuracy,
label_mapping={"neg": 0, "pos": 1},)
res_f13 = eval.compute(model_or_pipeline=pipe3, data=data, metric=f1,
label_mapping={"neg": 0, "pos": 1},)
print({**res_accuracy3, **res_f13})
pipe4 = pipeline("text-classification", model=model4, tokenizer= tokenizer4, device=0)
res_accuracy4 = eval.compute(model_or_pipeline=pipe4, data=data, metric=accuracy,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
res_f14 = eval.compute(model_or_pipeline=pipe4, data=data, metric=f1,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
print({**res_accuracy4, **res_f14})
pipe5 = pipeline("text-classification", model=model5, tokenizer= tokenizer5, device=0)
res_accuracy5 = eval.compute(model_or_pipeline=pipe5, data=data, metric=accuracy,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
res_f15 = eval.compute(model_or_pipeline=pipe5, data=data, metric=f1,
label_mapping={"LABEL_0": 0, "LABEL_1": 1},)
print({**res_accuracy5, **res_f15})
plt.plot(res_accuracy1['accuracy'], res_f11['f1'], marker='o', markersize=6, color="red")
plt.annotate('distilbert', xy=(res_accuracy1['accuracy']+0.001, res_f11['f1']))
plt.plot(res_accuracy2['accuracy'], res_f12['f1'], marker='o', markersize=6, color="blue")
plt.annotate('distilbert-base-uncased-finetuned', xy=(res_accuracy2['accuracy']+0.001, res_f12['f1']))
plt.plot(res_accuracy3['accuracy'], res_f13['f1'], marker='o', markersize=6, color="green")
plt.annotate('roberta-base', xy=(res_accuracy3['accuracy']-0.009, res_f13['f1']))
plt.plot(res_accuracy4['accuracy'], res_f14['f1'], marker='o', markersize=6, color="purple")
plt.annotate('funnel-transformer-small', xy=(res_accuracy4['accuracy']-0.015, res_f14['f1']))
plt.plot(res_accuracy5['accuracy'], res_f15['f1'], marker='o', markersize=6, color="black")
plt.annotate('SENATOR', xy=(res_accuracy5['accuracy']+0.001, res_f15['f1']))
plt.xlabel('Accuracy')
plt.ylabel('F1 Score')
#plt.xlim([0.9, 1.0])
#plt.ylim([0.9, 1.0])
plt.title('Comparing the Models')
"""