Spaces:
Runtime error
Runtime error
import streamlit as st | |
from evaluate import evaluator | |
import evaluate | |
import datasets | |
from huggingface_hub import HfApi, ModelFilter | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from transformers import pipeline, AutoConfig | |
import matplotlib.pyplot as plt | |
st.title("Metric Compare") | |
st.markdown("### Choose the dataset you want to use for the comparison:") | |
api = HfApi() | |
dsets = [d.id for d in api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20) if d.id !='glue'] | |
dset = st.selectbox('Choose a dataset from the Hub', options=dsets) | |
info = datasets.get_dataset_infos(dset) | |
dset_config = st.selectbox('What config do you want to use?', options=list(info)) | |
splitlist= [] | |
for s in info[dset_config].splits: | |
if s != 'train': | |
splitlist.append(s) | |
dset_split = st.selectbox('Choose a dataset split for evaluation', options=splitlist) | |
st.markdown("### Select up to 5 models to compare their performance:") | |
filt = ModelFilter(trained_dataset=dset) | |
all_models = [m.modelId for m in api.list_models(filter=filt, sort = "downloads", direction=-1, limit = 20) if 't5' not in m.tags] | |
models = st.multiselect( | |
'Choose the models that have been trained/finetuned on this dataset', | |
options=all_models) | |
if len(models) > 5: | |
st.exception("Please choose less than 5 models!") | |
st.markdown("### What two metrics do you want to compare?") | |
metrics = st.multiselect( | |
'Choose the metrics for the comparison', | |
options=['f1', 'accuracy', 'precision', 'recall'], | |
default=["f1", "accuracy"]) | |
st.markdown("### Please wait for the dataset and models to load (this can take some time if they are big!") | |
### Loading data | |
def loaddset(d, d_split): | |
data = datasets.load_dataset(d, split=d_split) | |
return(data) | |
data = loaddset(dset,dset_split) | |
### Defining Evaluator | |
eval = evaluator("text-classification") | |
### Loading models | |
def load_models(mod_names): | |
model_list=[] | |
for i in range (len(mod_names)): | |
try: | |
globals()[f"tokenizer_{i}"] = AutoTokenizer.from_pretrained(mod_names[i]) | |
globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(mod_names[i]) | |
model_list.append(mod_names[i]) | |
except: | |
continue | |
return(model_list) | |
### Defining pipelines | |
def load_pipes(mod_list): | |
pipe_list=[] | |
for i in range (len(mod_list)): | |
globals()[f"pipe_{i}"] = pipeline("text-classification", model = models[i], tokenizer = models[i], device=-1) | |
return(pipe_list) | |
model_list= load_models(models) | |
pipes = load_pipes(model_list) | |
### Defining metrics | |
for i in range (len(metrics)): | |
globals()[f"metrics[i]"] = evaluate.load(metrics[i]) | |
## Label mapping | |
st.markdown("### Help us pick the right labels for your models") | |
st.text("The labels for your dataset are: "+ str(data.features['label'].names)) | |
for i in range (len(model_list)): | |
st.text("The labels for " + str(model_list[i]) + "are: "+ str(AutoConfig.from_pretrained(model_list[i]).id2label)) | |
for j in range (len(data.features['label'].names)): | |
globals()[f"model[i]_label[j]"] = st.selectbox("The label corresponding to **" + str(data.features['label'].names[i]) + "** is:", AutoConfig.from_pretrained(model_list[i]).id2label) | |
_ = """ | |
res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy, | |
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) | |
res_f11 = eval.compute(model_or_pipeline=pipe1, data=data, metric=f1, | |
label_mapping={"NEGATIVE": 0, "POSITIVE": 1},) | |
print({**res_accuracy1, **res_f11}) | |
pipe2 = pipeline("text-classification", model=model2, tokenizer= tokenizer2, device=0) | |
res_accuracy2 = eval.compute(model_or_pipeline=pipe2, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f12 = eval.compute(model_or_pipeline=pipe2, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy2, **res_f12}) | |
pipe3 = pipeline("text-classification", model=model3, tokenizer= tokenizer3, device=0) | |
res_accuracy3 = eval.compute(model_or_pipeline=pipe3, data=data, metric=accuracy, | |
label_mapping={"neg": 0, "pos": 1},) | |
res_f13 = eval.compute(model_or_pipeline=pipe3, data=data, metric=f1, | |
label_mapping={"neg": 0, "pos": 1},) | |
print({**res_accuracy3, **res_f13}) | |
pipe4 = pipeline("text-classification", model=model4, tokenizer= tokenizer4, device=0) | |
res_accuracy4 = eval.compute(model_or_pipeline=pipe4, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f14 = eval.compute(model_or_pipeline=pipe4, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy4, **res_f14}) | |
pipe5 = pipeline("text-classification", model=model5, tokenizer= tokenizer5, device=0) | |
res_accuracy5 = eval.compute(model_or_pipeline=pipe5, data=data, metric=accuracy, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
res_f15 = eval.compute(model_or_pipeline=pipe5, data=data, metric=f1, | |
label_mapping={"LABEL_0": 0, "LABEL_1": 1},) | |
print({**res_accuracy5, **res_f15}) | |
plt.plot(res_accuracy1['accuracy'], res_f11['f1'], marker='o', markersize=6, color="red") | |
plt.annotate('distilbert', xy=(res_accuracy1['accuracy']+0.001, res_f11['f1'])) | |
plt.plot(res_accuracy2['accuracy'], res_f12['f1'], marker='o', markersize=6, color="blue") | |
plt.annotate('distilbert-base-uncased-finetuned', xy=(res_accuracy2['accuracy']+0.001, res_f12['f1'])) | |
plt.plot(res_accuracy3['accuracy'], res_f13['f1'], marker='o', markersize=6, color="green") | |
plt.annotate('roberta-base', xy=(res_accuracy3['accuracy']-0.009, res_f13['f1'])) | |
plt.plot(res_accuracy4['accuracy'], res_f14['f1'], marker='o', markersize=6, color="purple") | |
plt.annotate('funnel-transformer-small', xy=(res_accuracy4['accuracy']-0.015, res_f14['f1'])) | |
plt.plot(res_accuracy5['accuracy'], res_f15['f1'], marker='o', markersize=6, color="black") | |
plt.annotate('SENATOR', xy=(res_accuracy5['accuracy']+0.001, res_f15['f1'])) | |
plt.xlabel('Accuracy') | |
plt.ylabel('F1 Score') | |
#plt.xlim([0.9, 1.0]) | |
#plt.ylim([0.9, 1.0]) | |
plt.title('Comparing the Models') | |
""" |