Spaces:
Runtime error
Runtime error
Update app.py
Browse filesa bunch of changes that will probably crash
app.py
CHANGED
@@ -10,48 +10,99 @@ import matplotlib.pyplot as plt
|
|
10 |
|
11 |
st.title("Metric Compare")
|
12 |
|
13 |
-
st.markdown("
|
14 |
|
15 |
api = HfApi()
|
16 |
datasets = [d.id for d in api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20)]
|
17 |
|
18 |
dset = st.selectbox('Choose a dataset from the Hub', options=datasets)
|
19 |
|
20 |
-
st.
|
21 |
|
22 |
-
filt = ModelFilter(trained_dataset=dset)
|
23 |
-
models = [m.modelId for m in api.list_models(filter=filt, sort = "downloads", direction=-1, limit = 20)]
|
24 |
-
|
25 |
-
model = st.multiselect(
|
26 |
-
'Choose the models that have been trained/finetuned on this dataset',
|
27 |
-
options=models)
|
28 |
-
|
29 |
-
"""
|
30 |
-
tokenizer1 = AutoTokenizer.from_pretrained("lvwerra/distilbert-imdb")
|
31 |
-
|
32 |
-
model1 = AutoModelForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb")
|
33 |
-
|
34 |
-
tokenizer2 = AutoTokenizer.from_pretrained("sahn/distilbert-base-uncased-finetuned-imdb")
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
model3 = AutoModelForSequenceClassification.from_pretrained("aychang/roberta-base-imdb")
|
41 |
-
|
42 |
-
tokenizer4 = AutoTokenizer.from_pretrained("Sreevishnu/funnel-transformer-small-imdb")
|
43 |
-
model4 = AutoModelForSequenceClassification.from_pretrained("Sreevishnu/funnel-transformer-small-imdb")
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
f1 = evaluate.load('f1')
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
pipe1 = pipeline("text-classification", model=model1, tokenizer= tokenizer1, device=0)
|
57 |
res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy,
|
|
|
10 |
|
11 |
st.title("Metric Compare")
|
12 |
|
13 |
+
st.markdown("### Choose the dataset you want to use for the comparison:")
|
14 |
|
15 |
api = HfApi()
|
16 |
datasets = [d.id for d in api.list_datasets(filter="task_categories:text-classification", sort = "downloads", direction=-1, limit = 20)]
|
17 |
|
18 |
dset = st.selectbox('Choose a dataset from the Hub', options=datasets)
|
19 |
|
20 |
+
dset_split = st.selectbox('Choose a dataset split for evaluation', options=dset.keys())
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
st.markdown("### Now select up to 5 models to compare their performance:")
|
24 |
|
25 |
+
filt = ModelFilter(trained_dataset=dset)
|
26 |
+
all_models = [m.modelId for m in api.list_models(filter=filt, sort = "downloads", direction=-1, limit = 20) if 't5' not in model.tags]
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
models = st.multiselect(
|
29 |
+
'Choose the models that have been trained/finetuned on this dataset',
|
30 |
+
options=all_models)
|
31 |
+
|
32 |
+
button = st.button("Print Models",disabled=False)
|
33 |
+
|
34 |
+
if button :
|
35 |
+
if len(location) < 6:
|
36 |
+
st.write(models)
|
37 |
+
else:
|
38 |
+
st.warning("Please select at most 5 models")
|
39 |
+
|
40 |
+
st.markdown("### What two metrics do you want to compare?")
|
41 |
+
|
42 |
+
metrics = st.multiselect(
|
43 |
+
'Choose the metrics for the comparison',
|
44 |
+
options=['f1', 'accuracy', 'precision', 'recall'])
|
45 |
+
|
46 |
+
button2 = st.button("Print Metrics",disabled=False)
|
47 |
+
|
48 |
+
if button2 :
|
49 |
+
if len(metrics ) < 3:
|
50 |
+
st.write(metrics)
|
51 |
+
else:
|
52 |
+
st.warning("Please select at most 2 metrics")
|
53 |
+
|
54 |
+
st.markdown("### Now wait for the dataset and models to load (this can take some time if they are big!")
|
55 |
+
|
56 |
+
### Loading data
|
57 |
+
try:
|
58 |
+
data = datasets.load_dataset(dset, split=dset_split)
|
59 |
+
st.text("Loaded the validation split of dataset "+ str(dset))
|
60 |
+
except:
|
61 |
+
data = datasets.load_dataset(dset, split="test")
|
62 |
+
st.text("Loaded the test split of dataset "+ str(dset))
|
63 |
+
|
64 |
+
st.text("Sorry, I can't load this dataset... try another one!")
|
65 |
+
|
66 |
+
### Loading models
|
67 |
+
|
68 |
+
for i in range (len(models)):
|
69 |
+
try:
|
70 |
+
globals()[f"tokenizer_{i}"] = AutoTokenizer.from_pretrained(models[i])
|
71 |
+
globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(models[i])
|
72 |
+
st.text("Loaded model "+ str(models[i]))
|
73 |
+
except:
|
74 |
+
st.text("Sorry, I can't load model "+ str(models[i]))
|
75 |
+
|
76 |
+
### Defining metrics
|
77 |
+
for i in range (len(metrics)):
|
78 |
+
try:
|
79 |
+
globals()[f"metrics[i]"] = evaluate.load(metrics[i])
|
80 |
+
except:
|
81 |
+
st.text("Sorry, I can't load metric "+ str(metrics[i]) +"... Try another one!")
|
82 |
+
|
83 |
+
|
84 |
+
### Defining Evaluator
|
85 |
+
eval = evaluator("text-classification")
|
86 |
|
87 |
+
### Defining pipelines
|
88 |
|
89 |
+
st.markdown("### Help us pick the right labels for your models")
|
|
|
90 |
|
91 |
+
st.text("The labels for your dataset are: "+ str(data.features['label'].names))
|
92 |
|
93 |
+
"""
|
94 |
+
for i in range (len(model_list)):
|
95 |
+
st.text("The labels for your dataset are: "+ str(data.features['label'].names))
|
96 |
+
print(model_list[i])
|
97 |
+
print(AutoConfig.from_pretrained(models[0]).id2label)
|
98 |
+
|
99 |
+
for i in range (len(models)):
|
100 |
+
try:
|
101 |
+
globals()[f"pipe1_{i}"] = AutoTokenizer.from_pretrained(models[i])
|
102 |
+
globals()[f"model_{i}"] = AutoModelForSequenceClassification.from_pretrained(models[i])
|
103 |
+
st.text("Loaded model "+ str(models[i]))
|
104 |
+
except:
|
105 |
+
st.text("Sorry, I can't load model "+ str(models[i]))
|
106 |
|
107 |
pipe1 = pipeline("text-classification", model=model1, tokenizer= tokenizer1, device=0)
|
108 |
res_accuracy1 = eval.compute(model_or_pipeline=pipe1, data=data, metric=accuracy,
|