File size: 4,379 Bytes
3e43423
6d787c4
 
196b164
c670c44
6d787c4
c670c44
6d787c4
 
 
196b164
 
6d787c4
0212ece
6d787c4
69db194
6d787c4
 
 
196b164
 
 
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
c670c44
4779900
6d787c4
 
 
0212ece
 
6d787c4
 
0212ece
 
6d787c4
 
0212ece
2ef57a2
6d787c4
2ef57a2
 
 
6d787c4
 
 
 
 
 
0212ece
6d787c4
 
 
196b164
2ef57a2
 
 
ae1a3fb
2ef57a2
 
 
 
 
 
 
 
 
6d787c4
 
 
 
0212ece
 
6d787c4
2ef57a2
 
 
 
196b164
2ef57a2
 
 
 
 
 
196b164
2ef57a2
 
 
 
196b164
 
2ef57a2
26e4985
2ef57a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from datasets import load_dataset, get_dataset_config_names
from functools import partial
from pandas import DataFrame
import earthview as ev
import gradio as gr 
import tqdm
import os

DEBUG = False

if DEBUG:
    import numpy as np

def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
    if shard == -1:
        # Trick to open the whole dataset
        data_files = None
        shards = 100
    else:
        config = ev.sets[set_name].get("config", set_name)
        shards = ev.sets[set_name]["shards"]
        path   = ev.sets[set_name].get("path", set_name)
        data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}

    if DEBUG:
        ds  = lambda:None
        ds.n_shards = 1234
        dsi = range(100)
    else:
        ds = load_dataset(
            dataset,
            config,
            split=split,
            cache_dir="dataset",
            data_files=data_files,
            streaming=True,
            token=os.environ.get("HF_TOKEN", None))
    
        dsi = iter(ds)

    state["config"]  = config
    state["dsi"] = dsi
    return (
        gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
        *get_images(batch_size, state),
        state
    )
    
def get_images(batch_size, state):
    config = state["config"]

    images = []
    metadatas = []
    
    for i in tqdm.trange(batch_size, desc=f"Getting images"):
        if DEBUG:
            image = np.random.randint(0,255,(384,384,3))
            metadata = {"bounds":[[1,1,4,4]], }
        else:
            try:
                item = next(state["dsi"])
            except StopIteration:
                break
            metadata = item["metadata"]
            item = ev.item_to_images(config, item)

            if  config == "satellogic":
                images.extend(item["rgb"])
                # images.extend(item["1m"])
            if  config == "sentinel_1":
                images.extend(item["10m"])
            if  config == "default":
                images.extend(item["rgb"])
                images.extend(item["chm"])
                images.extend(item["1m"])
            metadatas.append(item["metadata"])

    return images, DataFrame(metadatas)

def update_shape(rows, columns):
    return gr.update(rows=rows, columns=columns)

def new_state():
    return gr.State({})

if __name__ == "__main__":
    with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
        state = new_state()

        gr.Markdown(f"# Viewer for [{ev.DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
        batch_size = gr.Number(10, label = "Batch Size", render=False)
        shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
        table = gr.DataFrame(render = False)
        # headers=["Index","TimeStamp","Bounds","CRS"], 

        gallery = gr.Gallery(
            label=ev.DATASET,
            interactive=False,
            columns=5, rows=2, render=False)

        with gr.Row():
            dataset = gr.Textbox(label="Dataset", value=ev.DATASET, interactive=False)
            config = gr.Dropdown(choices=ev.get_sets(), label="Config", value="satellogic", )
            split = gr.Textbox(label="Split", value="train")
            initial_shard = gr.Number(label = "Initial shard", value=10, info="-1 for whole dataset")

            gr.Button("Load (minutes)").click(
                open_dataset,
                inputs=[dataset, config, split, batch_size, state, initial_shard],
                outputs=[shard, gallery, table, state])

        gallery.render()
        
        with gr.Row():
            batch_size.render()

            rows = gr.Number(2, label="Rows")
            columns = gr.Number(5, label="Coluns")

            rows.change(update_shape, [rows, columns], [gallery])
            columns.change(update_shape, [rows, columns], [gallery])

        with gr.Row():
            shard.render()
            shard.release(
                open_dataset,
                inputs=[dataset, config, split, batch_size, state, shard],
                outputs=[shard, gallery, table, state])

            btn = gr.Button("Next Batch (same shard)", scale=0)
            btn.click(get_images, [batch_size, state], [gallery, table])
            btn.click()
        
        table.render()

    demo.launch(show_api=False)