Spaces:
Running
Running
from datasets import load_dataset as _load_dataset | |
from os import environ | |
from PIL import Image | |
import numpy as np | |
import json | |
from pyarrow.parquet import ParquetFile | |
from pyarrow import Table as pa_Table | |
from datasets import Dataset | |
DATASET = "satellogic/EarthView" | |
sets = { | |
"satellogic": { | |
"shards" : 3676, | |
}, | |
"sentinel_1": { | |
"shards" : 1763, | |
}, | |
"neon": { | |
"config" : "default", | |
"shards" : 607, | |
"path" : "data", | |
} | |
} | |
def get_subsets(): | |
return sets.keys() | |
def get_nshards(subset): | |
return sets[subset]["shards"] | |
def get_path(subset): | |
return sets[subset].get("path", subset) | |
def get_config(subset): | |
return sets[subset].get("config", subset) | |
def load_dataset(subset, dataset="satellogic/EarthView", split="train", shards = None, streaming=True, **kwargs): | |
config = get_config(subset) | |
nshards = get_nshards(subset) | |
path = get_path(subset) | |
if shards is None: | |
data_files = None | |
else: | |
data_files = [f"{path}/{split}-{shard:05d}-of-{nshards:05d}.parquet" for shard in shards] | |
data_files = {split: data_files} | |
ds = _load_dataset( | |
path=dataset, | |
name=config, | |
save_infos=True, | |
split=split, | |
data_files=data_files, | |
streaming=streaming, | |
token=environ.get("HF_TOKEN", None), | |
**kwargs) | |
return ds | |
def load_parquet(subset_or_filename, batch_size=100): | |
if subset_or_filename in get_subsets(): | |
filename = f"dataset/{subset_or_filename}/sample.parquet" | |
else: | |
filename = subset_or_filename | |
pqfile = ParquetFile(filename) | |
batch = pqfile.iter_batches(batch_size=batch_size) | |
return Dataset(pa_Table.from_batches(batch)) | |
def item_to_images(subset, item): | |
""" | |
Converts the images within an item (arrays), as retrieved from the dataset to proper PIL.Image | |
subset: The name of the Subset, one of "satellogic", "default", "sentinel-1" | |
item: The item as retrieved from the subset | |
returns the item, with arrays converted to PIL.Image | |
""" | |
metadata = item["metadata"] | |
if type(metadata) == str: | |
metadata = json.loads(metadata) | |
item = { | |
k: np.asarray(v).astype("uint8") | |
for k,v in item.items() | |
if k != "metadata" | |
} | |
item["metadata"] = metadata | |
if subset == "satellogic": | |
# item["rgb"] = [ | |
# Image.fromarray(np.average(image.transpose(1,2,0), 2).astype("uint8")) | |
# for image in item["rgb"] | |
# ] | |
rgbs = [] | |
for rgb in item["rgb"]: | |
rgbs.append(Image.fromarray(rgb.transpose(1,2,0))) | |
# rgbs.append(Image.fromarray(rgb[0,:,:])) # Red | |
# rgbs.append(Image.fromarray(rgb[1,:,:])) # Green | |
# rgbs.append(Image.fromarray(rgb[2,:,:])) # Blue | |
item["rgb"] = rgbs | |
item["1m"] = [ | |
Image.fromarray(image[0,:,:]) | |
for image in item["1m"] | |
] | |
count = len(item["1m"]) | |
elif subset == "sentinel_1": | |
# Mapping of V and H to RGB. May not be correct | |
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels | |
i10m = item["10m"] | |
i10m = np.concatenate( | |
( i10m, | |
np.expand_dims( | |
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256, | |
1 | |
).astype("uint8") | |
), | |
1 | |
) | |
item["10m"] = [ | |
Image.fromarray(image.transpose(1,2,0)) | |
for image in i10m | |
] | |
count = len(item["10m"]) | |
elif subset == "neon": | |
item["rgb"] = [ | |
Image.fromarray(image.transpose(1,2,0)) | |
for image in item["rgb"] | |
] | |
item["chm"] = [ | |
Image.fromarray(image[0]) | |
for image in item["chm"] | |
] | |
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB | |
# It just averages each 1/3 of the bads and assigns it to a channel | |
item["1m"] = [ | |
Image.fromarray( | |
np.concatenate(( | |
np.expand_dims(np.average(image[:124],0),2), | |
np.expand_dims(np.average(image[124:247],0),2), | |
np.expand_dims(np.average(image[247:],0),2)) | |
,2).astype("uint8")) | |
for image in item["1m"] | |
] | |
count = len(item["rgb"]) | |
item["metadata"]["count"] = count | |
return item | |