|
from LLM import Bot
|
|
import random
|
|
|
|
class Parse_Prompt(Bot):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.change = True
|
|
self.model1 = None
|
|
self.model2 = None
|
|
self.chat_history_1 = []
|
|
self.chat_history_2 = []
|
|
|
|
def model_init(self):
|
|
return random.sample(self.models, 2)
|
|
|
|
def clear_history(self):
|
|
self.chat_history_1 = []
|
|
self.chat_history_2 = []
|
|
|
|
def change_models(self):
|
|
self.clear_history()
|
|
self.change = True
|
|
|
|
def current_model1(self):
|
|
return self.model1
|
|
def current_model2(self):
|
|
return self.model2
|
|
|
|
def gen_output(self, temp, prompt):
|
|
if self.change:
|
|
[self.model1, self.model2] = self.model_init()
|
|
self.change = False
|
|
self.chat_history_1.append([prompt, self.response(self.model1, prompt, temp)])
|
|
self.chat_history_2.append([prompt, self.response(self.model2, prompt, temp)])
|
|
return self.chat_history_1, self.chat_history_2 |