Spaces:
Runtime error
Runtime error
| from huggingface_hub.keras_mixin import from_pretrained_keras | |
| from PIL import Image | |
| import numpy as np | |
| from create_maxim_model import Model | |
| from maxim.configs import MAXIM_CONFIGS | |
| _MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol") | |
| def mod_padding_symmetric(image, factor=64): | |
| """Padding the image to be divided by factor.""" | |
| height, width = image.shape[0], image.shape[1] | |
| height_pad, width_pad = ((height + factor) // factor) * factor, ( | |
| (width + factor) // factor | |
| ) * factor | |
| padh = height_pad - height if height % factor != 0 else 0 | |
| padw = width_pad - width if width % factor != 0 else 0 | |
| image = tf.pad( | |
| image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" | |
| ) | |
| return image | |
| def _convert_input_type_range(img): | |
| """Convert the type and range of the input image. | |
| It converts the input image to np.float32 type and range of [0, 1]. | |
| It is mainly used for pre-processing the input image in colorspace | |
| convertion functions such as rgb2ycbcr and ycbcr2rgb. | |
| Args: | |
| img (ndarray): The input image. It accepts: | |
| 1. np.uint8 type with range [0, 255]; | |
| 2. np.float32 type with range [0, 1]. | |
| Returns: | |
| (ndarray): The converted image with type of np.float32 and range of | |
| [0, 1]. | |
| """ | |
| img_type = img.dtype | |
| img = img.astype(np.float32) | |
| if img_type == np.float32: | |
| pass | |
| elif img_type == np.uint8: | |
| img /= 255.0 | |
| else: | |
| raise TypeError( | |
| "The img type should be np.float32 or np.uint8, " f"but got {img_type}" | |
| ) | |
| return img | |
| def _convert_output_type_range(img, dst_type): | |
| """Convert the type and range of the image according to dst_type. | |
| It converts the image to desired type and range. If `dst_type` is np.uint8, | |
| images will be converted to np.uint8 type with range [0, 255]. If | |
| `dst_type` is np.float32, it converts the image to np.float32 type with | |
| range [0, 1]. | |
| It is mainly used for post-processing images in colorspace convertion | |
| functions such as rgb2ycbcr and ycbcr2rgb. | |
| Args: | |
| img (ndarray): The image to be converted with np.float32 type and | |
| range [0, 255]. | |
| dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it | |
| converts the image to np.uint8 type with range [0, 255]. If | |
| dst_type is np.float32, it converts the image to np.float32 type | |
| with range [0, 1]. | |
| Returns: | |
| (ndarray): The converted image with desired type and range. | |
| """ | |
| if dst_type not in (np.uint8, np.float32): | |
| raise TypeError( | |
| "The dst_type should be np.float32 or np.uint8, " f"but got {dst_type}" | |
| ) | |
| if dst_type == np.uint8: | |
| img = img.round() | |
| else: | |
| img /= 255.0 | |
| return img.astype(dst_type) | |
| def make_shape_even(image): | |
| """Pad the image to have even shapes.""" | |
| height, width = image.shape[0], image.shape[1] | |
| padh = 1 if height % 2 != 0 else 0 | |
| padw = 1 if width % 2 != 0 else 0 | |
| image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") | |
| return image | |
| def process_image(image: Image): | |
| input_img = np.asarray(image) / 255.0 | |
| height, width = input_img.shape[0], input_img.shape[1] | |
| # Padding images to have even shapes | |
| input_img = make_shape_even(input_img) | |
| height_even, width_even = input_img.shape[0], input_img.shape[1] | |
| # padding images to be multiplies of 64 | |
| input_img = mod_padding_symmetric(input_img, factor=64) | |
| input_img = tf.expand_dims(input_img, axis=0) | |
| return input_img, height_even, width_even | |
| def init_new_model(input_img): | |
| configs = MAXIM_CONFIGS.get("S-2") | |
| configs.update( | |
| { | |
| "variant": "S-2", | |
| "dropout_rate": 0.0, | |
| "num_outputs": 3, | |
| "use_bias": True, | |
| "num_supervision_scales": 3, | |
| } | |
| ) | |
| configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) | |
| new_model = Model(**configs) | |
| new_model.set_weights(_MODEL.get_weights()) | |
| return new_model | |
| def infer(image): | |
| preprocessed_image, height_even, width_even = process_image(image) | |
| new_model = init_new_model(preprocessed_image) | |
| preds = new_model.predict(preprocessed_image) | |
| if isinstance(preds, list): | |
| preds = preds[-1] | |
| if isinstance(preds, list): | |
| preds = preds[-1] | |
| preds = np.array(preds[0], np.float32) | |
| new_height, new_width = preds.shape[0], preds.shape[1] | |
| h_start = new_height // 2 - height_even // 2 | |
| h_end = h_start + height | |
| w_start = new_width // 2 - width_even // 2 | |
| w_end = w_start + width | |
| preds = preds[h_start:h_end, w_start:w_end, :] | |
| return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8))) |