Spaces:
Runtime error
Runtime error
""" | |
Some preprocessing utilities have been taken from: | |
https://github.com/google-research/maxim/blob/main/maxim/run_eval.py | |
""" | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
from huggingface_hub.keras_mixin import from_pretrained_keras | |
from PIL import Image | |
from create_maxim_model import Model | |
from maxim.configs import MAXIM_CONFIGS | |
_MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol") | |
def mod_padding_symmetric(image, factor=64): | |
"""Padding the image to be divided by factor.""" | |
height, width = image.shape[0], image.shape[1] | |
height_pad, width_pad = ((height + factor) // factor) * factor, ( | |
(width + factor) // factor | |
) * factor | |
padh = height_pad - height if height % factor != 0 else 0 | |
padw = width_pad - width if width % factor != 0 else 0 | |
image = tf.pad( | |
image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" | |
) | |
return image | |
def make_shape_even(image): | |
"""Pad the image to have even shapes.""" | |
height, width = image.shape[0], image.shape[1] | |
padh = 1 if height % 2 != 0 else 0 | |
padw = 1 if width % 2 != 0 else 0 | |
image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") | |
return image | |
def process_image(image: Image): | |
input_img = np.asarray(image) / 255.0 | |
height, width = input_img.shape[0], input_img.shape[1] | |
# Padding images to have even shapes | |
input_img = make_shape_even(input_img) | |
height_even, width_even = input_img.shape[0], input_img.shape[1] | |
# padding images to be multiplies of 64 | |
input_img = mod_padding_symmetric(input_img, factor=64) | |
input_img = tf.expand_dims(input_img, axis=0) | |
return input_img, height, width, height_even, width_even | |
def init_new_model(input_img): | |
configs = MAXIM_CONFIGS.get("S-2") | |
configs.update( | |
{ | |
"variant": "S-2", | |
"dropout_rate": 0.0, | |
"num_outputs": 3, | |
"use_bias": True, | |
"num_supervision_scales": 3, | |
} | |
) | |
configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) | |
new_model = Model(**configs) | |
new_model.set_weights(_MODEL.get_weights()) | |
return new_model | |
def infer(image): | |
preprocessed_image, height, width, height_even, width_even = process_image(image) | |
new_model = init_new_model(preprocessed_image) | |
preds = new_model.predict(preprocessed_image) | |
if isinstance(preds, list): | |
preds = preds[-1] | |
if isinstance(preds, list): | |
preds = preds[-1] | |
preds = np.array(preds[0], np.float32) | |
new_height, new_width = preds.shape[0], preds.shape[1] | |
h_start = new_height // 2 - height_even // 2 | |
h_end = h_start + height | |
w_start = new_width // 2 - width_even // 2 | |
w_end = w_start + width | |
preds = preds[h_start:h_end, w_start:w_end, :] | |
return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8))) | |
title = "Enhance low-light images." | |
article = "Model based on [this](https://huggingface.co/sayakpaul/S-2_enhancement_lol)." | |
iface = gr.Interface( | |
infer, | |
inputs="image", | |
outputs="image", | |
title=title, | |
article=article, | |
allow_flagging="never", | |
examples=[["1.png"], ["111.png"], ["748.png"], ["a4541-DSC_0040-2.png"]], | |
) | |
iface.launch(debug=True) | |