""" Some preprocessing utilities have been taken from: https://github.com/google-research/maxim/blob/main/maxim/run_eval.py """ import gradio as gr import numpy as np import tensorflow as tf from huggingface_hub.keras_mixin import from_pretrained_keras from PIL import Image from create_maxim_model import Model from maxim.configs import MAXIM_CONFIGS _MODEL = from_pretrained_keras("sayakpaul/S-2_enhancement_lol") def mod_padding_symmetric(image, factor=64): """Padding the image to be divided by factor.""" height, width = image.shape[0], image.shape[1] height_pad, width_pad = ((height + factor) // factor) * factor, ( (width + factor) // factor ) * factor padh = height_pad - height if height % factor != 0 else 0 padw = width_pad - width if width % factor != 0 else 0 image = tf.pad( image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT" ) return image def make_shape_even(image): """Pad the image to have even shapes.""" height, width = image.shape[0], image.shape[1] padh = 1 if height % 2 != 0 else 0 padw = 1 if width % 2 != 0 else 0 image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT") return image def process_image(image: Image): input_img = np.asarray(image) / 255.0 height, width = input_img.shape[0], input_img.shape[1] # Padding images to have even shapes input_img = make_shape_even(input_img) height_even, width_even = input_img.shape[0], input_img.shape[1] # padding images to be multiplies of 64 input_img = mod_padding_symmetric(input_img, factor=64) input_img = tf.expand_dims(input_img, axis=0) return input_img, height, width, height_even, width_even def init_new_model(input_img): configs = MAXIM_CONFIGS.get("S-2") configs.update( { "variant": "S-2", "dropout_rate": 0.0, "num_outputs": 3, "use_bias": True, "num_supervision_scales": 3, } ) configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])}) new_model = Model(**configs) new_model.set_weights(_MODEL.get_weights()) return new_model def infer(image): preprocessed_image, height, width, height_even, width_even = process_image(image) new_model = init_new_model(preprocessed_image) preds = new_model.predict(preprocessed_image) if isinstance(preds, list): preds = preds[-1] if isinstance(preds, list): preds = preds[-1] preds = np.array(preds[0], np.float32) new_height, new_width = preds.shape[0], preds.shape[1] h_start = new_height // 2 - height_even // 2 h_end = h_start + height w_start = new_width // 2 - width_even // 2 w_end = w_start + width preds = preds[h_start:h_end, w_start:w_end, :] return Image.fromarray(np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(np.uint8))) title = "Enhance low-light images." article = "Model based on [this](https://huggingface.co/sayakpaul/S-2_enhancement_lol)." iface = gr.Interface( infer, inputs="image", outputs="image", title=title, article=article, allow_flagging="never", examples=[["1.png"], ["111.png"], ["748.png"], ["a4541-DSC_0040-2.png"]], ) iface.launch(debug=True)