File size: 5,354 Bytes
8cf98bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
References:
https://github.com/KONAKONA666/q8_kernels/blob/9cee3f3d4ca5ec8ab463179be32c8001e31f8f33/q8_kernels/utils/convert_weights.py
"""

import torch
import torch.nn as nn
from q8_kernels.modules.rms_norm import RMSNorm as QRMSNorm
from diffusers.models.normalization import RMSNorm
from q8_kernels.modules.activations import GELU as QGELU
from diffusers.models.activations import GELU
from q8_kernels.modules.linear import Q8Linear
from q8_attention_processors import LTXVideoQ8AttentionProcessor

MODULES_TO_NOT_CONVERT = ["proj_in", "time_embed", "caption_projection", "proj_out"]


def replace_linear(model, current_key_name=None, replaced=False):
    for name, child in model.named_children():
        if current_key_name is None:
            current_key_name = []
        current_key_name.append(name)

        if isinstance(child, nn.Linear) and name not in MODULES_TO_NOT_CONVERT:
            # Check if the current key is not in the `modules_to_not_convert`
            current_key_name_str = ".".join(current_key_name)
            if not any(
                (key + "." in current_key_name_str) or (key == current_key_name_str) for key in MODULES_TO_NOT_CONVERT
            ):
                new_linear = Q8Linear(
                    child.in_features, child.out_features, bias=child.bias is not None, device=child.weight.device
                )
                setattr(model, name, new_linear)
                replaced = True
        else:
            replace_linear(model=child, current_key_name=current_key_name, replaced=replaced)

        current_key_name.pop(-1)

    return model, replaced


def get_parent_module_and_attr(root, dotted_name: str):
    """
    Splits 'a.b.c' into:
    - parent module = root.a.b
    - attr_name = 'c'
    """
    parts = dotted_name.split(".")
    *parent_parts, attr_name = parts
    parent_module = root
    for p in parent_parts:
        parent_module = getattr(parent_module, p)
    return parent_module, attr_name


def replace_rms_norm(model):
    modules_to_replace = []
    for dotted_name, module in model.named_modules():
        if isinstance(module, RMSNorm):
            modules_to_replace.append((dotted_name, module))

    replaced = False
    for dotted_name, module in modules_to_replace:
        parent, attr_name = get_parent_module_and_attr(model, dotted_name)
        new_norm = QRMSNorm(
            dim=module.dim,
            elementwise_affine=module.elementwise_affine,
        )
        setattr(parent, attr_name, new_norm)
        replaced = True

    return model, replaced


def replace_gelu(model, replaced=False):
    for name, child in model.named_children():
        if isinstance(child, GELU):
            new_gelu = QGELU(
                dim_in=child.proj.in_features,
                dim_out=child.proj.out_features,
                approximate=child.approximate,
                bias=child.proj.bias is not None,
            )
            setattr(model, name, new_gelu)
            replaced = True
        else:
            replace_gelu(model=child, replaced=replaced)

    return model, replaced


def set_attn_processors(model, processor):
    def fn_recursive_attn_processor(name, module: torch.nn.Module, processor):
        if hasattr(module, "set_processor"):
            module.set_processor(processor)
        for sub_name, child in module.named_children():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in model.named_children():
        fn_recursive_attn_processor(name, module, processor)


def attn_processors(model) -> dict:
    processors = {}

    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: dict):
        if hasattr(module, "get_processor"):
            processors[f"{name}.processor"] = module.get_processor()

        for sub_name, child in module.named_children():
            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

        return processors

    for name, module in model.named_children():
        fn_recursive_add_processors(name, module, processors)

    return processors


def check_transformer_replaced_correctly(model):
    for block in model.transformer_blocks:
        assert isinstance(block.attn1.to_q, Q8Linear), f"{type(block.attn1.to_q)=} not linear."
        assert isinstance(block.attn2.to_q, Q8Linear), f"{type(block.attn2.to_q)=} not linear."
        assert block.attn1.to_q.weight.dtype == torch.int8, f"{block.attn1.to_q.weight.dtype=}."
        assert block.attn2.to_q.weight.dtype == torch.int8, f"{name=} {block.attn2.to_q.weight.dtype=}."

    for name, module in model.named_modules():
        if "norm" in name and "norm_out" not in name:
            assert isinstance(module, QRMSNorm), f"{name=}, {type(module)=}"

    for block in model.transformer_blocks:
        assert isinstance(block.ff.net[0], QGELU), f"{type(block.ff.net[0])=}"
        if getattr(block.ff.net[0], "proj", None) is not None:
            assert block.ff.net[0].proj.weight.dtype == torch.int8, f"{block.ff.net[0].proj.weight.dtype=}."

    set_attn_processors(model, LTXVideoQ8AttentionProcessor())
    all_attn_processors = attn_processors(model)
    for k, v in all_attn_processors.items():
        assert isinstance(v, LTXVideoQ8AttentionProcessor), f"{name} is not of type LTXVideoQ8AttentionProcessor."