sayanbanerjee32 commited on
Commit
3b2349b
·
verified ·
1 Parent(s): 8337d2a

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +83 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+
5
+ import skimage
6
+ from PIL import Image
7
+
8
+ import open_clip
9
+
10
+ import gradio as gr
11
+
12
+ model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
13
+ model.eval() # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
14
+ tokenizer = open_clip.get_tokenizer('ViT-B-32')
15
+
16
+ target_labels = ["page","chelsea","astronaut","rocket",
17
+ "motorcycle_right","camera","horse","coffee",
18
+ 'logo']
19
+
20
+ original_images = []
21
+ images = []
22
+ file_names = []
23
+
24
+ for filename in [filename for filename in os.listdir(skimage.data_dir) if filename.endswith(".png") or filename.endswith(".jpg")]:
25
+ name = os.path.splitext(filename)[0]
26
+ if name not in target_labels:
27
+ continue
28
+
29
+ image = Image.open(os.path.join(skimage.data_dir, filename)).convert("RGB")
30
+
31
+ original_images.append(image)
32
+ images.append(preprocess(image))
33
+ file_names.append(filename)
34
+
35
+ image_input = torch.tensor(np.stack(images))
36
+ with torch.no_grad(), torch.cuda.amp.autocast():
37
+ image_features = model.encode_image(image_input).float()
38
+ image_features /= image_features.norm(dim=-1, keepdim=True)
39
+
40
+
41
+ def identify_image(input_description):
42
+ if input_description is None: return None
43
+ text_tokens = tokenizer([input_description])
44
+ with torch.no_grad(), torch.cuda.amp.autocast():
45
+ text_features = model.encode_text(text_tokens).float()
46
+ text_features /= text_features.norm(dim=-1, keepdim=True)
47
+ text_probs = (100.0 * image_features @ text_features.T)
48
+ top_probs, _ = text_probs.cpu().topk(1, dim=-1)
49
+ return original_images[top_probs.argmax().item()]
50
+
51
+ with gr.Blocks() as demo:
52
+ gr.HTML("<h1 align = 'center'> Image Search </h1>")
53
+ gr.HTML("<h4 align = 'center'> Identify the most suitable image for description provided.</h4>")
54
+
55
+ gr.Gallery(value = original_images,
56
+ label="Images to search from", show_label=True, elem_id="gallery"
57
+ , columns=[3], rows=[3], object_fit="contain", height="auto")
58
+
59
+ content = gr.Textbox(label = "Enter search text here")
60
+ inputs = [
61
+ content,
62
+ ]
63
+ gr.Examples(["Page of text about segmentation",
64
+ "Facial photo of a tabby cat",
65
+ "Portrait of an astronaut with the American flag",
66
+ "Rocket standing on a launchpad",
67
+ "Red motorcycle standing in a garage",
68
+ "Person looking at a camera on a tripod",
69
+ "Black-and-white silhouette of a horse",
70
+ "Cup of coffee on a saucer",
71
+ "A snake in the background"],
72
+ inputs = inputs)
73
+
74
+ generate_btn = gr.Button(value = 'Identify')
75
+ outputs = [gr.Image(label = "Is this the image you are referring to?",
76
+ height = 512, width = 512)]
77
+ generate_btn.click(fn = identify_image, inputs= inputs, outputs = outputs)
78
+
79
+ ## for collab
80
+ # demo.launch(debug=True)
81
+
82
+ if __name__ == '__main__':
83
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ scikit-image
2
+ open_clip_torch
3
+ pillow
4
+ torch