|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
import gradio as gr |
|
import spaces |
|
|
|
model_id = "meta-llama/Llama-Guard-3-8B-INT8" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.bfloat16 |
|
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
@spaces.GPU |
|
def load_model(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=dtype, |
|
device_map=device, |
|
quantization_config=quantization_config |
|
) |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
def moderate(user_input, assistant_response): |
|
chat = [ |
|
{"role": "user", "content": user_input}, |
|
{"role": "assistant", "content": assistant_response}, |
|
] |
|
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device) |
|
output = model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) |
|
prompt_len = input_ids.shape[-1] |
|
return tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) |
|
|
|
def gradio_moderate(user_input, assistant_response): |
|
return moderate(user_input, assistant_response) |
|
|
|
iface = gr.Interface( |
|
fn=gradio_moderate, |
|
inputs=[ |
|
gr.Textbox(lines=3, label="User Input"), |
|
gr.Textbox(lines=3, label="Assistant Response") |
|
], |
|
outputs=gr.Textbox(label="Moderation Result"), |
|
title="Llama Guard Moderation", |
|
description="Enter a user input and an assistant response to check for content moderation." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |