schroneko commited on
Commit
3c1404f
·
verified ·
1 Parent(s): 0a17bfe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -18
app.py CHANGED
@@ -14,34 +14,40 @@ dtype = torch.bfloat16
14
 
15
  quantization_config = BitsAndBytesConfig(load_in_8bit=True)
16
 
17
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
18
- model = AutoModelForCausalLM.from_pretrained(
19
- model_id,
20
- torch_dtype=dtype,
21
- device_map="auto",
22
- quantization_config=quantization_config,
23
- token=huggingface_token,
24
- low_cpu_mem_usage=True
25
- )
26
-
27
  def parse_llama_guard_output(result):
28
- lines = [line.strip().lower() for line in result.split('\n') if line.strip()]
 
 
 
 
29
 
30
  if not lines:
31
- return "Error", "No valid output", result
32
 
 
33
  safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None)
34
 
35
  if safety_status == 'safe':
36
- return "Safe", "None", result
37
  elif safety_status == 'unsafe':
 
38
  violated_categories = next((lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), "Unspecified")
39
- return "Unsafe", violated_categories, result
40
  else:
41
- return "Error", f"Invalid output: {safety_status}", result
42
 
43
  @spaces.GPU
44
  def moderate(user_input, assistant_response):
 
 
 
 
 
 
 
 
 
 
45
  chat = [
46
  {"role": "user", "content": user_input},
47
  {"role": "assistant", "content": assistant_response},
@@ -51,12 +57,12 @@ def moderate(user_input, assistant_response):
51
  with torch.no_grad():
52
  output = model.generate(
53
  input_ids=input_ids,
54
- max_new_tokens=100,
55
  pad_token_id=tokenizer.eos_token_id,
 
56
  )
57
 
58
- prompt_len = input_ids.shape[-1]
59
- result = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
60
 
61
  return parse_llama_guard_output(result)
62
 
 
14
 
15
  quantization_config = BitsAndBytesConfig(load_in_8bit=True)
16
 
 
 
 
 
 
 
 
 
 
 
17
  def parse_llama_guard_output(result):
18
+ # "<END CONVERSATION>" 以降の部分を抽出
19
+ safety_assessment = result.split("<END CONVERSATION>")[-1].strip()
20
+
21
+ # 行ごとに分割して処理
22
+ lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()]
23
 
24
  if not lines:
25
+ return "Error", "No valid output", safety_assessment
26
 
27
+ # "safe" または "unsafe" を探す
28
  safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None)
29
 
30
  if safety_status == 'safe':
31
+ return "Safe", "None", safety_assessment
32
  elif safety_status == 'unsafe':
33
+ # "unsafe" の次の行を違反カテゴリーとして扱う
34
  violated_categories = next((lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), "Unspecified")
35
+ return "Unsafe", violated_categories, safety_assessment
36
  else:
37
+ return "Error", f"Invalid output: {safety_status}", safety_assessment
38
 
39
  @spaces.GPU
40
  def moderate(user_input, assistant_response):
41
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ model_id,
44
+ torch_dtype=dtype,
45
+ device_map="auto",
46
+ quantization_config=quantization_config,
47
+ token=huggingface_token,
48
+ low_cpu_mem_usage=True
49
+ )
50
+
51
  chat = [
52
  {"role": "user", "content": user_input},
53
  {"role": "assistant", "content": assistant_response},
 
57
  with torch.no_grad():
58
  output = model.generate(
59
  input_ids=input_ids,
60
+ max_new_tokens=200,
61
  pad_token_id=tokenizer.eos_token_id,
62
+ do_sample=False
63
  )
64
 
65
+ result = tokenizer.decode(output[0], skip_special_tokens=True)
 
66
 
67
  return parse_llama_guard_output(result)
68